Embedding Spanning Bipartite Graphs of Small Bandwidth

Bottcher, Schacht and Taraz Math. Ann., 2009 gave a condition on the minimum degree of a graph G on n vertices that ensures G contains every r-chromatic graph H on n vertices of bounded degree and of bandwidth on, thereby proving a conjecture of Bollobas and Komlos Combin. Probab. Comput., 1999. We strengthen this result in the case when H is bipartite. Indeed, we give an essentially best-possible condition on the degree sequence of a graph G on n vertices that forces G to contain every bipartite graph H on n vertices of bounded degree and of bandwidth on. This also implies an Ore-type result. In fact, we prove a much stronger result where the condition on G is relaxed to a certain robust expansion property. Our result also confirms the bipartite case of a conjecture of Balogh, Kostochka and Treglown concerning the degree sequence of a graph which forces a perfect H-packing.

[1]  Béla Bollobás,et al.  Packing d-degenerate graphs , 2008, J. Comb. Theory, Ser. B.

[2]  János Komlós,et al.  Proof of the Alon-Yuster conjecture , 2001, Discret. Math..

[3]  C. V. Eynden,et al.  A proof of a conjecture of Erdös , 1969 .

[4]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[5]  Andras Hajnal,et al.  On the maximal number of independent circuits in a graph , 1963 .

[6]  Daniela Kühn,et al.  An approximate version of Sumnerʼs universal tournament conjecture , 2011, J. Comb. Theory, Ser. B.

[7]  Daniela Kühn,et al.  Critical chromatic number and the complexity of perfect packings in graphs , 2006, SODA '06.

[8]  M. Schacht,et al.  Proof of the bandwidth conjecture of Bollobás and Komlós , 2009 .

[9]  Phong Châu An Ore-Type Theorem on Hamiltonian Square Cycles , 2013, Graphs Comb..

[10]  Alexandr V. Kostochka,et al.  An Ore-type theorem on equitable coloring , 2008, J. Comb. Theory, Ser. B.

[11]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[12]  Daniela Kühn,et al.  An Ore-type Theorem for Perfect Packings in Graphs , 2008, SIAM J. Discret. Math..

[13]  V. Chvátal On Hamilton's ideals , 1972 .

[14]  Julia Böttcher,et al.  Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs , 2009, Eur. J. Comb..

[15]  Endre Szemerédi,et al.  Proof of the Seymour conjecture for large graphs , 1998 .

[16]  Julia Böttcher Embedding large graphs , 2009 .

[17]  Julia Böttcher,et al.  Forcing spanning subgraphs via Ore type conditions , 2009, Electron. Notes Discret. Math..

[18]  Victor Alexandrov,et al.  Problem section , 2007 .

[19]  Béla Csaba,et al.  On embedding well-separable graphs , 2007, Discret. Math..

[20]  Benny Sudakov,et al.  A randomized embedding algorithm for trees , 2010, Comb..

[21]  Daniela Kühn,et al.  The minimum degree threshold for perfect graph packings , 2009, Comb..

[22]  Hao Huang,et al.  Bandwidth theorem for random graphs , 2012, J. Comb. Theory, Ser. B.

[23]  Bolyai János Matematikai Társulat,et al.  Combinatorial theory and its applications , 1970 .

[24]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[25]  J. Komlos The Blow-up Lemma , 1999, Combinatorics, Probability and Computing.

[26]  Daniela Kühn,et al.  Hamiltonian degree sequences in digraphs , 2008, J. Comb. Theory, Ser. B.

[27]  O. Ore Note on Hamilton Circuits , 1960 .

[28]  Mathias Schacht,et al.  Spanning 3-colourable subgraphs of small bandwidth in dense graphs , 2008, J. Comb. Theory, Ser. B.

[29]  Jfinos Koml s Proof of the Seymour Conjecture for Large Graphs , 2005 .

[30]  Alexandr V. Kostochka,et al.  On Perfect Packings in Dense Graphs , 2011, Electron. J. Comb..