Embedding Spanning Bipartite Graphs of Small Bandwidth
暂无分享,去创建一个
[1] Béla Bollobás,et al. Packing d-degenerate graphs , 2008, J. Comb. Theory, Ser. B.
[2] János Komlós,et al. Proof of the Alon-Yuster conjecture , 2001, Discret. Math..
[3] C. V. Eynden,et al. A proof of a conjecture of Erdös , 1969 .
[4] Noga Alon,et al. AlmostH-factors in dense graphs , 1992, Graphs Comb..
[5] Andras Hajnal,et al. On the maximal number of independent circuits in a graph , 1963 .
[6] Daniela Kühn,et al. An approximate version of Sumnerʼs universal tournament conjecture , 2011, J. Comb. Theory, Ser. B.
[7] Daniela Kühn,et al. Critical chromatic number and the complexity of perfect packings in graphs , 2006, SODA '06.
[8] M. Schacht,et al. Proof of the bandwidth conjecture of Bollobás and Komlós , 2009 .
[9] Phong Châu. An Ore-Type Theorem on Hamiltonian Square Cycles , 2013, Graphs Comb..
[10] Alexandr V. Kostochka,et al. An Ore-type theorem on equitable coloring , 2008, J. Comb. Theory, Ser. B.
[11] G. Dirac. Some Theorems on Abstract Graphs , 1952 .
[12] Daniela Kühn,et al. An Ore-type Theorem for Perfect Packings in Graphs , 2008, SIAM J. Discret. Math..
[13] V. Chvátal. On Hamilton's ideals , 1972 .
[14] Julia Böttcher,et al. Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs , 2009, Eur. J. Comb..
[15] Endre Szemerédi,et al. Proof of the Seymour conjecture for large graphs , 1998 .
[16] Julia Böttcher. Embedding large graphs , 2009 .
[17] Julia Böttcher,et al. Forcing spanning subgraphs via Ore type conditions , 2009, Electron. Notes Discret. Math..
[18] Victor Alexandrov,et al. Problem section , 2007 .
[19] Béla Csaba,et al. On embedding well-separable graphs , 2007, Discret. Math..
[20] Benny Sudakov,et al. A randomized embedding algorithm for trees , 2010, Comb..
[21] Daniela Kühn,et al. The minimum degree threshold for perfect graph packings , 2009, Comb..
[22] Hao Huang,et al. Bandwidth theorem for random graphs , 2012, J. Comb. Theory, Ser. B.
[23] Bolyai János Matematikai Társulat,et al. Combinatorial theory and its applications , 1970 .
[24] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[25] J. Komlos. The Blow-up Lemma , 1999, Combinatorics, Probability and Computing.
[26] Daniela Kühn,et al. Hamiltonian degree sequences in digraphs , 2008, J. Comb. Theory, Ser. B.
[27] O. Ore. Note on Hamilton Circuits , 1960 .
[28] Mathias Schacht,et al. Spanning 3-colourable subgraphs of small bandwidth in dense graphs , 2008, J. Comb. Theory, Ser. B.
[29] Jfinos Koml s. Proof of the Seymour Conjecture for Large Graphs , 2005 .
[30] Alexandr V. Kostochka,et al. On Perfect Packings in Dense Graphs , 2011, Electron. J. Comb..