Apparent and standard molar volumes and heat capacities of aqueous Ni(ClO4)2 from 25 to 85°C

[1]  A. B. Campbell,et al.  Apparent molar heat capacities and volumes for HClO4(aq) to 373 K , 1996 .

[2]  P. Tremaine,et al.  Thermodynamics of aqueous zinc: Standard partial molar heat capacities and volumes of Zn2+(aq) from 10 to 55°C , 1994 .

[3]  M. Jébrak,et al.  Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians , 1993 .

[4]  E. Matteoli,et al.  Apparent molar heat capacity of aqueous hydrolyzed and non-hydrolyzed AlCl3 between 50 and 150°C , 1992 .

[5]  D. G. Archer,et al.  Thermodynamic Properties of the NaCl+H2O System. II. Thermodynamic Properties of NaCl(aq), NaCl⋅2H2(cr), and Phase Equilibria , 1992 .

[6]  D. G. Archer,et al.  The Dielectric Constant of Water and Debye‐Hückel Limiting Law Slopes , 1990 .

[7]  L. Hepler,et al.  Apparent and partial molar heat capacities and volumes of aqueous HClO4 and HNO3 from 10 to 55 °C , 1989 .

[8]  D. Cubicciotti Equilibrium chemistry of nitrogen and potential-pH diagrams for the Fe-Cr-H2O system in bwr water , 1989 .

[9]  G. Atkinson,et al.  Apparent molal volumes and heat capacities of aqueous hydrogen chloride and perchloric acid at 15-55.degree.C , 1988 .

[10]  G. Atkinson,et al.  The volume of ions and ion-solvent pair correlation functions , 1988 .

[11]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[12]  L. Hepler,et al.  Apparent molar heat capacities and volumes of aqueous HClO4, HNO3, (CH3)4NOH and K2SO4 at 298.15 K , 1988 .

[13]  L. Hepler,et al.  Thermodynamics of aqueous aluminate ion: standard partial molar heat capacities and volumes of tetrahydroxyaluminate(1-)(aq) from 10 to 55.degree.C , 1988 .

[14]  H. Helgeson,et al.  Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures; Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes , 1988, American Journal of Science.

[15]  T. M. Herrington,et al.  Densities of aqueous electrolytes manganese dichloride, cobalt dichloride, nickel dichloride, zinc chloride, and cadmium chloride from 25 to 75.degree.C at 1 atm , 1986 .

[16]  P. Tremaine,et al.  The apparent molar heat capacity of aqueous hydrochloric acid from 10 to 140°C , 1986 .

[17]  A. D. Pethybridge,et al.  Densities of hydrochloric, hydrobromic, hydriodic, and perchloric acids from 25 to 75.degree.C at 1 atm , 1985 .

[18]  P. Radhakrishnamurty,et al.  PH‐POTENTIAL DIAGRAMS AT ELEVATED TEMPERATURES FOR THE CHROMIUM‐WATER SYSTEM , 1982 .

[19]  R. Wood,et al.  Heat capacities of aqueous solutions of nickelous chloride and nickel chloride-sodium chloride (NiCl2.2NaCl) from 0.12 to 3.0 mol kg-1 and 321 to 572 K at a pressure of 17.7 MPa , 1982 .

[20]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[21]  G. Perron,et al.  Heat capacities and volumes of NaCl, MgCl2, CaCl2, and NiCl2 up to 6 molal in water , 1981 .

[22]  F. Millero,et al.  Apparent molal volumes and adiabatic compressibilities of aqueous transition metal chlorides at 25.degree.C , 1980 .

[23]  R. Stokes,et al.  Density, conductance, transference numbers, and diffusion measurements in concentrated solutions of nickel chloride at 25°C , 1979 .

[24]  Daniel J. Bradley,et al.  Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hueckel parameters to 350.degree.C and 1 kbar , 1979 .

[25]  L. Hepler,et al.  Apparent molar heat capacities and volumes of aqueous electrolytes at 298.15 K: Ca(NO3)2, Co(NO3)2, Cu(NO3)2, Mg(NO3)2, Mn(NO3)2, Ni(NO3)2, and Zn(NO3)2☆ , 1979 .

[26]  P. Tremaine,et al.  Calculation of Gibbs free energies of aqueous electrolytes to 350.degree.C from an electrostatic model for ionic hydration , 1978 .

[27]  L. Hepler,et al.  Apparent molar heat capacities and volumes of aqueous electrolytes at 25°C: Cd(ClO4)2, Ca(ClO4)2, Co(ClO4)2, Mn(ClO4)2, Ni(ClO4)2, and Zn(ClO4)2 , 1978 .

[28]  L. Hepler,et al.  Apparent molar heat capacities and volumes of aqueous electrolytes: CaCl2, Cd(NO3)2, CoCl2, Cu(ClO4)2, Mg(ClO4)2, and NiCl2 , 1978 .

[29]  L. Hepler,et al.  Heat capacities of aqueous perchloric acid and sodium perchlorate at 298°K: ΔCpo of ionization of water , 1977 .

[30]  G. Perron,et al.  Reexamination of the heat capacities obtained by flow microcalorimetry. Recommendation for the use of a chemical standard , 1976 .

[31]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; I, Summary of the thermodynamic/electrostatic properties of the solvent , 1974 .

[32]  C. Jolicoeur,et al.  A high-precision digital readout flow densimeter for liquids , 1974 .

[33]  J. Desnoyers,et al.  Heat capacity of solutions by flow microcalorimetry , 1971 .