Responses to Natural Scenes in Cat V 1

[PDF] [Full Text] [Abstract] , March, 2008; 18 (3): 610-625. Cereb. Cortex Mitchell Steinschneider, Yonatan I. Fishman and Joseph C. Arezzo Primary Auditory Cortex (A1) of the Awake Monkey Spectrotemporal Analysis of Evoked and Induced Electroencephalographic Responses in [PDF] [Full Text] [Abstract] , May, 19 2009; 106 (20): 8356-8361. PNAS and Krish D. Singh Suresh D. Muthukumaraswamy, Richard A.E. Edden, Derek K. Jones, Jennifer B. Swettenham response to visual stimulation in humans Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in [PDF] [Full Text] [Abstract] , UNKNOWN, 2009; 102 (2): 1241-1253. J Neurophysiol J. B. Swettenham, S. D. Muthukumaraswamy and K. D. Singh Cortex to Moving and Stationary Stimuli Spectral Properties of Induced and Evoked Gamma Oscillations in Human Early Visual [PDF] [Full Text] [Abstract] , UNKNOWN, 2009; (): . Cereb. Cortex Bruss Lima, Wolf Singer, Nan-Hui Chen and Sergio Neuenschwander Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1 [PDF] [Full Text] [Abstract] , July, 2010; 20 (7): 1556-1573. Cereb. Cortex Bruss Lima, Wolf Singer, Nan-Hui Chen and Sergio Neuenschwander Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1

[1]  A. Fuchs,et al.  Saccadic, smooth pursuit, and optokinetic eye movements of the trained cat. , 1978, The Journal of physiology.

[2]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[3]  H. Spekreijse,et al.  FigureGround Segregation in a Recurrent Network Architecture , 2002, Journal of Cognitive Neuroscience.

[4]  Wolfgang Maass,et al.  Spiking Neurons , 1998, NC.

[5]  R. Eckhorn,et al.  Contour decouples gamma activity across texture representation in monkey striate cortex. , 2000, Cerebral cortex.

[6]  C. Mathiesen,et al.  Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis , 2000, The Journal of physiology.

[7]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  K. Hoffmann,et al.  Synchronization of Neuronal Activity during Stimulus Expectation in a Direction Discrimination Task , 1997, The Journal of Neuroscience.

[9]  R. Desimone,et al.  Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  P. König,et al.  A Functional Gamma-Band Defined by Stimulus-Dependent Synchronization in Area 18 of Awake Behaving Cats , 2003, The Journal of Neuroscience.

[11]  Victor A. F. Lamme,et al.  Source (or Part of the following Source): Type Article Title Internal State of Monkey Primary Visual Cortex (v1) Predicts Figure Ground Perception Author(s) Internal State of Monkey Primary Visual Cortex (v1) Predicts Figure–ground Perception Materials and Methods , 2022 .

[12]  M. Lauritzen,et al.  Relationship of Spikes, Synaptic Activity, and Local Changes of Cerebral Blood Flow , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  Nikos K. Logothetis,et al.  Nonmonotonic noise tuning of BOLD fMRI signal to natural images in the visual cortex of the anesthetized monkey , 2001, Current Biology.

[14]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[15]  Rainer Goebel,et al.  Neural synchrony correlates with surface segregation rules , 2000, Nature.

[16]  D. V. van Essen,et al.  Response profiles to texture border patterns in area V1 , 2000, Visual Neuroscience.

[17]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[18]  A. Robertson ANAESTHESIA AND RECEPTIVE FIELDS. , 1965, Nature.

[19]  R Eckhorn,et al.  Inhibition of sustained gamma oscillations (35-80 Hz) by fast transient responses in cat visual cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  József Fiser,et al.  Coding of Natural Scenes in Primary Visual Cortex , 2003, Neuron.

[21]  Victor A. F. Lamme,et al.  Neuronal synchrony does not represent texture segregation , 1998, Nature.

[22]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[23]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[24]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[25]  Roman Bauer,et al.  Perceptual grouping correlates with short synchronization in monkey prestriate cortex , 2002, Neuroreport.

[26]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[27]  Professor Moshe Abeles,et al.  Local Cortical Circuits , 1982, Studies of Brain Function.

[28]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[29]  M. Crommelinck,et al.  Characteristics of cat's eye saccades in different states of alertness , 1976, Brain Research.

[30]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[31]  Victor A. F. Lamme,et al.  Figure-ground activity in primary visual cortex is suppressed by anesthesia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Sir G. Archaeopteryx Object-based attention in the primary visual cortex of the macaque monkey , 1998 .

[33]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[34]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Edmund T Rolls,et al.  The Receptive Fields of Inferior Temporal Cortex Neurons in Natural Scenes , 2003, The Journal of Neuroscience.

[37]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[39]  R. Eckhorn,et al.  Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. , 1994, Progress in brain research.

[40]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[41]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[42]  Christoph Kayser,et al.  Temporal Correlations of Orientations in Natural Scenes , 2002, Neurocomputing.

[43]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[44]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[45]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[46]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[47]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.