Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis

We consider the stability and convergence analysis of pressure stabilized finite element approximations of the transient Stokes equation. The analysis is valid for a class of symmetric pressure stabilization operators, but also for standard, inf-sup stable, velocity/pressure spaces without stabilization. Provided the initial data are chosen as a specific (method-dependent) Ritz-projection, we get unconditional stability and optimal convergence for both pressure and velocity approximations, in natural norms. For arbitrary interpolations of the initial data, a condition between the space and time discretization parameters has to be verified in order to guarantee pressure stability.

[1]  P. Hansbo,et al.  Mathematical Modelling and Numerical Analysis Edge Stabilization for the Generalized Stokes Problem: a Continuous Interior Penalty Method , 2022 .

[2]  Michel Fortin,et al.  A minimal stabilisation procedure for mixed finite element methods , 2000, Numerische Mathematik.

[3]  Jeanine Weekes Schroer,et al.  The Finite String Newsletter Abstracts of Current Literature Glisp User's Manual , 2022 .

[4]  Daniele Boffi,et al.  Analysis of Finite Element Approximation of Evolution Problems in Mixed Form , 2004, SIAM J. Numer. Anal..

[5]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[6]  Ramon Codina,et al.  Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .

[7]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[8]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[9]  Rolf Stenberg,et al.  On weakly imposed boundary conditions for second order problems , 1995 .

[10]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[11]  Pavel B. Bochev,et al.  On stabilized finite element methods for the Stokes problem in the small time step limit , 2007 .

[12]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[13]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[14]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[15]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[16]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[17]  Mats Boman Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm , 2006 .

[18]  V. Thomée,et al.  The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .

[19]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[20]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[21]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[22]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[23]  Santiago Badia,et al.  On a multiscale approach to the transient Stokes problem: Dynamic subscales and anisotropic space-time discretization , 2009, Appl. Math. Comput..

[24]  David J. Silvester Optimal low order finite element methods for incompressible flow , 1994 .

[25]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[26]  R. Codina Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales , 2008 .

[27]  C. Dohrmann,et al.  A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .

[28]  R. Codina,et al.  A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .

[29]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[30]  Erik Burman,et al.  Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem , 2008 .

[31]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[32]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[33]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[34]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[35]  L. Quartapelle The incompressible Navier—Stokes equations , 1993 .

[36]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[37]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..