Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis
暂无分享,去创建一个
[1] P. Hansbo,et al. Mathematical Modelling and Numerical Analysis Edge Stabilization for the Generalized Stokes Problem: a Continuous Interior Penalty Method , 2022 .
[2] Michel Fortin,et al. A minimal stabilisation procedure for mixed finite element methods , 2000, Numerische Mathematik.
[3] Jeanine Weekes Schroer,et al. The Finite String Newsletter Abstracts of Current Literature Glisp User's Manual , 2022 .
[4] Daniele Boffi,et al. Analysis of Finite Element Approximation of Evolution Problems in Mixed Form , 2004, SIAM J. Numer. Anal..
[5] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[6] Ramon Codina,et al. Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .
[7] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[8] Erik Burman,et al. Stabilized finite element methods for the generalized Oseen problem , 2007 .
[9] Rolf Stenberg,et al. On weakly imposed boundary conditions for second order problems , 1995 .
[10] Erik Burman,et al. Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..
[11] Pavel B. Bochev,et al. On stabilized finite element methods for the Stokes problem in the small time step limit , 2007 .
[12] Joseph E. Pasciak,et al. On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..
[13] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[14] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[15] R. Codina,et al. Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .
[16] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[17] Mats Boman. Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm , 2006 .
[18] V. Thomée,et al. The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .
[19] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .
[20] F. Brezzi,et al. On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .
[21] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[22] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[23] Santiago Badia,et al. On a multiscale approach to the transient Stokes problem: Dynamic subscales and anisotropic space-time discretization , 2009, Appl. Math. Comput..
[24] David J. Silvester. Optimal low order finite element methods for incompressible flow , 1994 .
[25] Gunar Matthies,et al. A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .
[26] R. Codina. Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales , 2008 .
[27] C. Dohrmann,et al. A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .
[28] R. Codina,et al. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .
[29] L. Franca,et al. Stabilized Finite Element Methods , 1993 .
[30] Erik Burman,et al. Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem , 2008 .
[31] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[32] L. Franca,et al. Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .
[33] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[34] V. Thomée,et al. The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .
[35] L. Quartapelle. The incompressible Navier—Stokes equations , 1993 .
[36] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[37] Miguel A. Fernández,et al. Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..