Development of a Forecast Model for Global Air Traffic Emissions

This study describes the methodology and results of a simulation model that quantifies fuel consumption and emissions of civil air traffic. Besides covering historical emissions, the model aims at forecasting emissions in the medium-term future. For this purpose, simulation models of aircraft and engine types are used in combination with a database of global flight movements and assumptions about traffic growth, fleet rollover and operational aspects. Results from an application of the model include emissions of scheduled air traffic for the years 2000 to 2010 as well as forecasted emissions until the year 2030. In a baseline scenario of the forecast, input assumptions (e.g. traffic growth rates) are in line with predictions by the aircraft industry. Considering the effects of advanced technologies of the short-term and medium-term future, the forecast focusses on fuel consumption and emissions of nitric oxides. Calculations for historical air traffic additionally cover emissions of carbon monoxide, unburned hydrocarbons and soot. Results are validated against reference data including studies by the International Civil Aviation Organization (ICAO) and simulation results from international research projects.

[1]  S. Baughcum,et al.  Scheduled civil aircraft emission inventories for 1992: Database development and analysis , 1996 .

[2]  David S. Lee,et al.  Aviation and global climate change in the 21st century , 2009, Atmospheric Environment.

[3]  Jan Roskam Preliminary sizing of airplanes , 1989 .

[4]  Tobias Schlauch,et al.  Integrierte Modellierung des Luftverkehrssystems 1 -Abschlußbericht , 2010 .

[5]  E. Torenbeek,et al.  Synthesis of Subsonic Airplane Design , 1979 .

[6]  A. Schmitt,et al.  Die zeitliche Entwicklung der Verteilung der Luftverkehrsemissionen , 1997 .

[7]  Florian Wolters,et al.  DEVELOPMENT OF A GAS TURBINE PERFORMANCE CODE AND ITS APPLICATION TO PRELIMINARY ENGINE DESIGN , 2011 .

[8]  J. Middel,et al.  Fuel efficiency of commercial aircraft Fuel efficiency of commercial aircraft Fuel efficiency of commercial aircraft Fuel efficiency of commercial aircraft An overview of historical and future trends , 2005 .

[9]  R. Sausen,et al.  Contrails in a comprehensive global climate model: Parameterization and radiative forcing results , 2002 .

[10]  A. Meyer Economics Of Climate Change , 1995, Nature.

[11]  Volker Gollnick,et al.  Identifying carbon dioxide reducing aircraft technologies and estimating their impact on global CO2 emissions , 2008 .

[12]  David S. Lee,et al.  Aviation radiative forcing in 2000: an update on IPCC (1999) , 2005 .

[13]  Andreas Döpelheuer Anwendungsorientierte Verfahren zur Bestimmung von CO, HC und Ruß aus Luftfahrttriebwerken , 2002 .

[14]  Oliver Seebach,et al.  Entwicklung einer GUI-gestützten Datenbankanwendung zu Abfrage, Visualisierung und Reporting von Emissionsstudiendaten aus dem Luftverkehr , 2010 .

[15]  K. Atkinson,et al.  AERO2k Global Aviation Emissions Inventories for 2002 and 2025 , 2004 .

[16]  F. Deidewig Ermittlung der Schadstoffemissionen im Unter- und Überschallflug , 1998 .

[17]  Ulrich Schumann,et al.  Aircraft Emissions , 2001 .

[18]  Andreas Döpelheuer Quantities, Characteristics and Reduction Potentials of Aircraft Engine Emissions , 2001 .

[19]  E. Ayeh,et al.  The Impact of NOx Emissions from Aircraft Upon the Atmosphere at Flight Altitudes 8-15 km , 1995 .

[20]  Eberhard Nicke,et al.  Abschlussbericht CLAIRE 2 , 2010 .

[21]  Nicolas Jeuland,et al.  State of the Art on Alternative Fuels in Aviation. SWAFEA. Sustainable Way for Alternative Fuels and Energy in Aviation. , 2010 .

[22]  Martin Schaefer,et al.  Ökonomische Effekte des EU-Emissionshandelssystems auf Fluggesellschaften und EU-Mitgliedstaaten: ein innovativer Modellierungsansatz , 2010 .

[23]  Sven Maertens,et al.  Modelling Air Transport's CO2-Emissions and Evaluating the Impact of the Upcoming EU Emissions Trading System , 2009 .

[24]  Steven L. Baughcum,et al.  Commercial Aircraft Emission Scenario for 2020: Database Development and Analysis , 2003 .

[25]  A. Döpelheuer,et al.  Influence of engine performance on emission characteristics , 1999 .

[26]  Ulrich Schumann,et al.  Formation, properties and climatic effects of contrails , 2005 .

[27]  Martin Schaefer Methodologies for Aviation Emission Calculation - A comparison of alternative approaches towards 4D global inventories , 2006 .

[28]  James I. Hileman,et al.  Energy Content and Alternative Jet Fuel Viability , 2010 .

[29]  M. Rachner,et al.  Die Stoffeigenschaften von Kerosin Jet A-1 , 1998 .

[30]  Hukam Mongia,et al.  Low Emissions Propulsion Engine Combustor Technology Evolution Past , Present and Future , .

[31]  Martin Schaefer,et al.  Einfluss lärmarmer An- und Abflugverfahren auf NO X - und CO 2 -Emissionen im Flughafennahbereich , 2008 .

[32]  F. Deidewig,et al.  Methods to Assess Aircraft Engine Emissions in Flight , 1996 .

[33]  Wolfgang Grimme,et al.  The inclusion of aviation into the EU emission trading scheme – Impacts on competition between European and non-European network airlines , 2010 .

[34]  Mark Z. Jacobson,et al.  Analysis of emission data from global commercial aviation: 2004 and 2006 , 2010 .

[35]  Wolfgang Grimme,et al.  The variability of air transport's specific emissions and implications for airline strategies , 2008 .

[36]  Ian A. Waitz,et al.  Effects of Engine Aging on Aircraft NOx Emissions , 1997 .