The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles

[1]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[2]  H. Akaike A new look at the statistical model identification , 1974 .

[3]  Kai Lai Chung,et al.  Elementary Probability Theory , 1974 .

[4]  S. Levay,et al.  Retrograde transport of [3H]proline: a widespread phenomenon in the central nervous system , 1983, Brain Research.

[5]  J Bullier,et al.  Branching and laminar origin of projections between visual cortical areas in the cat , 1984, The Journal of comparative neurology.

[6]  J Bullier,et al.  Bifurcation of subcortical afferents to visual areas 17, 18, and 19 in the cat cortex , 1984, The Journal of comparative neurology.

[7]  Béla Bollobás,et al.  Random Graphs , 1985 .

[8]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  H. Kennedy,et al.  Topography of the afferent connectivity of area 17 in the macaque monkey: A double‐labelling study , 1986, The Journal of comparative neurology.

[10]  J Bullier,et al.  Callosal connectivity of areas V1 and V2 in the newborn monkey , 1986, The Journal of comparative neurology.

[11]  F. Condé Further studies on the use of the fluorescent tracers fast blue and diamidino yellow: Effective uptake area and cellular storage sites , 1987, Journal of Neuroscience Methods.

[12]  C. Olson,et al.  Organization of cortical and subcortical projections to medial prefrontal cortex in the cat , 1988, The Journal of comparative neurology.

[13]  C R Olson,et al.  Organization of cortical and subcortical projections to anterior cingulate cortex in the cat , 1988, The Journal of comparative neurology.

[14]  H. Kennedy,et al.  Absence of interhemispheric connections of area 17 during development in the monkey , 1988, Nature.

[15]  R. Malach,et al.  Patterns of connections in rat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[17]  Charles F. Stevens,et al.  How Cortical Interconnectedness Varies with Network Size , 1989, Neural Computation.

[18]  J. Bullier,et al.  Bihemispheric Axonal Bifurcation of the Afferents to the Visual Cortical Areas during Postnatal Development in the Rat , 1990, The European journal of neuroscience.

[19]  J L Ringo,et al.  Neuronal interconnection as a function of brain size. , 1991, Brain, behavior and evolution.

[20]  Mara Fabri,et al.  Ipsilateral cortical connections of primary somatic sensory cortex in rats , 1991, The Journal of comparative neurology.

[21]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[22]  C R Olson,et al.  Topographic organization of cortical and subcortical projections to posterior cingulate cortex in the cat: Evidence for somatic, ocular, and complex subregions , 1992, The Journal of comparative neurology.

[23]  A. Burkhalter,et al.  Hierarchical organization of areas in rat visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  H. Kennedy,et al.  Cortical specification of mice and men. , 1993, Cerebral cortex.

[25]  Karl J. Friston,et al.  Schizophrenia: a disconnection syndrome? , 1995, Clinical neuroscience.

[26]  B. Payne,et al.  Transgeniculate signal transmission to middle suprasylvian cortex in intact cats and following early removal of areas 17 and 18: a morphological study , 1997, Experimental Brain Research.

[27]  Jon H. Kaas,et al.  Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller , 2000 .

[28]  J W Scannell,et al.  On variability in the density of corticocortical and thalamocortical connections. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  A. Reiner,et al.  Pathway tracing using biotinylated dextran amines , 2000, Journal of Neuroscience Methods.

[30]  L. Chalupa,et al.  Organization of Visual Areas in Macaque and Human Cerebral Cortex , 2002 .

[31]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[32]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[33]  H. Kennedy,et al.  Anatomical Evidence of Multimodal Integration in Primate Striate Cortex , 2002, The Journal of Neuroscience.

[34]  K. Rockland,et al.  Honeycomb-Like Mosaic at the Border of Layers 1 and 2 in the Cerebral Cortex , 2003, The Journal of Neuroscience.

[35]  Massimo Marchiori,et al.  Economic small-world behavior in weighted networks , 2003 .

[36]  M. Remple,et al.  Organization of somatosensory cortex in the laboratory rat (Rattus norvegicus): Evidence for two lateral areas joined at the representation of the teeth , 2003, The Journal of comparative neurology.

[37]  Lawrence C. Sincich,et al.  Complete flatmounting of the macaque cerebral cortex , 2003, Visual Neuroscience.

[38]  A. Burkhalter,et al.  Rearrangement of synaptic connections with inhibitory neurons in developing mouse visual cortex , 2003, The Journal of comparative neurology.

[39]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[40]  M. Newman Analysis of weighted networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  J. N. Payne Comparisons between the use of true blue and diamidino yellow as retrograde fluorescent tracers , 2004, Experimental Brain Research.

[42]  J. Kaas,et al.  Myelin stains reveal an anatomical framework for the representation of the digits in somatosensory area 3b of macaque monkeys , 2004, The Journal of comparative neurology.

[43]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  H. Kuypers,et al.  Diamidino yellow dihydrochloride (DY·2HCl); a new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell , 2004, Experimental Brain Research.

[45]  A. Kimura,et al.  Efferent connections of “posterodorsal” auditory area in the rat cortex: Implications for auditory spatial processing , 2004, Neuroscience.

[46]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[47]  G. Striedter Principles of brain evolution. , 2005 .

[48]  A. Díaz-Guilera,et al.  Efficiency of informational transfer in regular and complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Péter Csermely,et al.  Weak links : stabilizers of complex systems from proteins to social networks , 2006 .

[50]  Quanxin Wang,et al.  In vivo transcranial imaging of connections in mouse visual cortex , 2007, Journal of Neuroscience Methods.

[51]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[52]  Quanxin Wang,et al.  Area map of mouse visual cortex , 2007, The Journal of comparative neurology.

[53]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[54]  J. Hilbe Negative Binomial Regression: Preface , 2007 .

[55]  Shen-Ju Chou,et al.  Area Patterning of the Mammalian Cortex , 2007, Neuron.

[56]  Alexander M. Benison,et al.  Auditory, somatosensory, and multisensory insular cortex in the rat. , 2008, Cerebral cortex.

[57]  J. Price :Allen Reference Atlas: A Digital Color Brain Atlas of the C57BL/6J Male Mouse , 2008 .

[58]  T. Kaneko,et al.  Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice , 2009, Neuroscience Research.

[59]  S. Bressler,et al.  Large-scale brain networks in cognition: emerging methods and principles , 2010, Trends in Cognitive Sciences.

[60]  Harry B. M. Uylings,et al.  Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse , 2010, Brain Structure and Function.

[61]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[62]  Quanxin Wang,et al.  Gateways of Ventral and Dorsal Streams in Mouse Visual Cortex , 2011, The Journal of Neuroscience.

[63]  Makoto Takemoto,et al.  Identification and characterization of an insular auditory field in mice , 2011, The European journal of neuroscience.

[64]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[65]  James H. Marshel,et al.  Functional Specialization of Seven Mouse Visual Cortical Areas , 2011, Neuron.

[66]  Xiaoke Chen,et al.  A Gustotopic Map of Taste Qualities in the Mammalian Brain , 2011, Science.

[67]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[68]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[69]  L. Krubitzer,et al.  Cortical evolution in mammals: The bane and beauty of phenotypic variability , 2012, Proceedings of the National Academy of Sciences.

[70]  Olaf Sporns,et al.  Network Analysis of Corticocortical Connections Reveals Ventral and Dorsal Processing Streams in Mouse Visual Cortex , 2012, The Journal of Neuroscience.

[71]  Henry Kennedy,et al.  A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule , 2013, Neuron.

[72]  Zoltán Toroczkai,et al.  The role of long-range connections on the specificity of the macaque interareal cortical network , 2013, Proceedings of the National Academy of Sciences.

[73]  T. Tamizh Chelvam,et al.  Inverse Domination in Graphs , 2013 .

[74]  Henry Kennedy,et al.  Cortical High-Density Counterstream Architectures , 2013, Science.

[75]  Kara L. Agster,et al.  Borders and comparative cytoarchitecture of the perirhinal and postrhinal cortices in an F1 hybrid mouse. , 2013, Cerebral cortex.

[76]  Zoltán Toroczkai,et al.  Why data coherence and quality is critical for understanding interareal cortical networks , 2013, NeuroImage.

[77]  M. Carandini,et al.  Probing perceptual decisions in rodents , 2013, Nature Neuroscience.

[78]  Randy L. Buckner,et al.  The evolution of distributed association networks in the human brain , 2013, Trends in Cognitive Sciences.

[79]  Bruno Mota,et al.  Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains , 2013, Front. Neuroanat..

[80]  Giuliano Iurilli,et al.  Cellular and Synaptic Architecture of Multisensory Integration in the Mouse Neocortex , 2013, Neuron.

[81]  H. F. Song,et al.  Spatial embedding of structural similarity in the cerebral cortex , 2014, Proceedings of the National Academy of Sciences.

[82]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[83]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[84]  G. Buzsáki,et al.  The log-dynamic brain: how skewed distributions affect network operations , 2014, Nature Reviews Neuroscience.

[85]  Edward T. Bullmore,et al.  A Unifying Framework for Measuring Weighted Rich Clubs , 2014, Scientific Reports.

[86]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[87]  Alexandros Goulas,et al.  The strength of weak connections in the macaque cortico-cortical network , 2014, Brain Structure and Function.

[88]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[89]  Ian Nauhaus,et al.  Topography and Areal Organization of Mouse Visual Cortex , 2014, The Journal of Neuroscience.

[90]  Hongkui Zeng,et al.  Systematic comparison of adeno‐associated virus and biotinylated dextran amine reveals equivalent sensitivity between tracers and novel projection targets in the mouse brain , 2014, The Journal of comparative neurology.

[91]  B. Haeffele,et al.  Multiscale Optical Ca2+ Imaging of Tonal Organization in Mouse Auditory Cortex , 2014, Neuron.

[92]  S. Manita,et al.  A Top-Down Cortical Circuit for Accurate Sensory Perception , 2015, Neuron.

[93]  O. Sporns,et al.  Architecture of the cerebral cortical association connectome underlying cognition , 2015, Proceedings of the National Academy of Sciences.

[94]  Hey-Kyoung Lee,et al.  Cross-modal synaptic plasticity in adult primary sensory cortices , 2015, Current Opinion in Neurobiology.

[95]  Sarah Feldt Muldoon,et al.  Small-World Propensity and Weighted Brain Networks , 2016, Scientific Reports.

[96]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[97]  Edward T. Bullmore,et al.  Statistical Analysis of Tract-Tracing Experiments Demonstrates a Dense, Complex Cortical Network in the Mouse , 2016, PLoS Comput. Biol..

[98]  Olaf Sporns,et al.  Comparative Connectomics , 2016, Trends in Cognitive Sciences.

[99]  Rebecca A Mease,et al.  Cortical Sensory Responses Are Enhanced by the Higher-Order Thalamus. , 2016, Cell reports.

[100]  K. Shibuki,et al.  Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain , 2016, Scientific Reports.

[101]  Nuo Li,et al.  Robust neuronal dynamics in premotor cortex during motor planning , 2016, Nature.

[102]  D. V. van Essen,et al.  Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates , 2016, PLoS biology.

[103]  K. Deisseroth,et al.  Prefrontal Parvalbumin Neurons in Control of Attention , 2016, Cell.

[104]  S Murray Sherman,et al.  Thalamus plays a central role in ongoing cortical functioning , 2016, Nature Neuroscience.

[105]  Henry Kennedy,et al.  Brain structure and dynamics across scales: in search of rules , 2016, Current Opinion in Neurobiology.

[106]  Zoltan Toroczkai,et al.  A multiscale cerebral neurochemical connectome of the rat brain , 2017, PLoS biology.

[107]  Manuel Teichert,et al.  Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing , 2017, NeuroImage.

[108]  Edward T. Bullmore,et al.  Small-World Brain Networks Revisited , 2016, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[109]  Yee Lian Chew,et al.  Network control principles predict neuron function in the Caenorhabditis elegans connectome , 2017, Nature.

[110]  N. Šestan,et al.  Evolution of the Human Nervous System Function, Structure, and Development , 2017, Cell.

[111]  Yang Li,et al.  An extended retinotopic map of mouse cortex , 2017, eLife.

[112]  CONTACT FOR REAGENT AND RESOURCE SHARING , 2018 .