Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium

We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 105 rad m−2 and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 104 cm−3. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.

[1]  H. Nagai,et al.  Discovery of a new subparsec counterjet in NGC 1275: the inclination angle and the environment , 2016, 1609.04017.

[2]  N. Soker,et al.  Hitomi observations of Perseus support heating by mixing , 2016, 1608.07818.

[3]  J. A. Zensus,et al.  First 3 mm-VLBI imaging of the two-sided jet in Cygnus A - Zooming into the launching region , 2016, 1603.04221.

[4]  Y. Fujita,et al.  The young radio lobe of 3C 84: inferred gas properties in the central 10 pc , 2015, 1510.08460.

[5]  A. Edge,et al.  Effects of the variability of the nucleus of NGC1275 on X-ray observations of the surrounding intracluster medium , 2015, 1505.03754.

[6]  M. Kino,et al.  MAGNETIZATION DEGREE AT THE JET BASE OF M87 DERIVED FROM THE EVENT HORIZON TELESCOPE DATA: TESTING THE MAGNETICALLY DRIVEN JET PARADIGM , 2015, 1502.03900.

[7]  M. Johnson,et al.  PROBING THE PARSEC-SCALE ACCRETION FLOW OF 3C 84 WITH MILLIMETER WAVELENGTH POLARIMETRY , 2014, 1410.5887.

[8]  M. Gurwell,et al.  A non-thermal study of the brightest cluster galaxy NGC 1275 - the Gamma-Radio connection over four decades. , 2014, 1405.3647.

[9]  G. Ghisellini,et al.  On the spine-layer scenario for the very high-energy emission of NGC 1275 , 2014, 1404.6894.

[10]  M. Kino,et al.  LIMB-BRIGHTENED JET OF 3C 84 REVEALED BY THE 43 GHz VERY-LONG-BASELINE-ARRAY OBSERVATION , 2014, 1402.5930.

[11]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[12]  R. Taam,et al.  CONSTRAINTS ON THE VISCOSITY AND MAGNETIC FIELD IN HOT ACCRETION FLOWS AROUND BLACK HOLES , 2013, 1306.5881.

[13]  M. Ruszkowski,et al.  Chaotic cold accretion on to black holes , 2013, 1301.3130.

[14]  M. Dopita,et al.  Kinematics and excitation of the molecular hydrogen accretion disc in NGC 1275 , 2012, 1211.6750.

[15]  Y. Fujita,et al.  Radio Mini-Halo Emission from Cosmic Rays in Galaxy Clusters and Heating of the Cool Cores , 2012, 1209.4639.

[16]  G. Bicknell,et al.  DRIVING OUTFLOWS WITH RELATIVISTIC JETS AND THE DEPENDENCE OF ACTIVE GALACTIC NUCLEUS FEEDBACK EFFICIENCY ON INTERSTELLAR MEDIUM INHOMOGENEITY , 2012, 1205.0542.

[17]  M. Kino,et al.  EXPLORING THE CENTRAL SUB-PARSEC REGION OF THE γ-RAY BRIGHT RADIO GALAXY 3C 84 WITH VLBA AT 43 GHz IN THE PERIOD OF 2002–2008 , 2012 .

[18]  Princeton,et al.  Multiphase, non-spherical gas accretion on to a black hole , 2011, 1112.5483.

[19]  Y. Fujita,et al.  NON-THERMAL EMISSIONS FROM COOL CORES HEATED BY COSMIC RAYS IN GALAXY CLUSTERS , 2011, 1111.4208.

[20]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[21]  Cambridge,et al.  Bondi flow from a slowly rotating hot atmosphere , 2011, 1105.0594.

[22]  K. Sokolovsky,et al.  A VLBA survey of the core shift effect in AGN jets - I. Evidence of dominating synchrotron opacity , 2011, 1103.6032.

[23]  Stephen R. Green,et al.  Numerical parameter survey of non‐radiative black hole accretion: flow structure and variability of the rotation measure , 2010, 1011.5498.

[24]  M. Kino,et al.  VLBI Monitoring of 3C 84 (NGC 1275) in Early Phase of the 2005 Outburst , 2010, 1001.3852.

[25]  S. O’Sullivan,et al.  Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets , 2009, 0907.5211.

[26]  C. Conselice,et al.  Magnetic support of the optical emission line filaments in NGC 1275 , 2008, Nature.

[27]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[28]  G. Ghisellini,et al.  Spine–sheath layer radiative interplay in subparsec‐scale jets and the TeV emission from M87 , 2008, 0801.0593.

[29]  Jeremy Lim,et al.  Radially Inflowing Molecular Gas in NGC 1275 Deposited by an X-Ray Cooling Flow in the Perseus Cluster , 2007, 0712.2979.

[30]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[31]  R. Taam,et al.  The Existence of Inner Cool Disks in the Low/Hard State of Accreting Black Holes , 2007, 0709.0143.

[32]  M. Lister,et al.  The Inner Jet of the Radio Galaxy M87 , 2007, 0708.2695.

[33]  William B. Sparks,et al.  The Mid-Infrared Emission of M87 , 2007, 0704.1156.

[34]  T. Yokoyama,et al.  The Origin of Ripples in Cool Cores of Galaxy Clusters: Heating by Magnetohydrodynamic Waves? , 2007, astro-ph/0703053.

[35]  R. Walker,et al.  High-Frequency VLBI Imaging of the Jet Base of M87 , 2007, astro-ph/0701511.

[36]  F. Walter,et al.  A Search for Molecular Gas in the Nucleus of M87 and Implications for the Fueling of Supermassive Black Holes , 2006, astro-ph/0610488.

[37]  M. Inoue,et al.  The Expanding Radio Lobe of 3C 84 Revealed by VSOP Observations , 2006 .

[38]  A. Edge,et al.  Cold molecular gas in the Perseus cluster core - Association with X-ray cavity, Halpha filaments and cooling flow - , 2006, astro-ph/0603350.

[39]  John E. Vaillancourt,et al.  Placing Confidence Limits on Polarization Measurements , 2006, astro-ph/0603110.

[40]  S. Allen,et al.  Magnetic fields in the centre of the Perseus cluster , 2006, astro-ph/0602622.

[41]  J. M. Moran,et al.  Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.

[42]  P. Edwards,et al.  The X-Ray Jet in Centaurus A: Clues to the Jet Structure and Particle Acceleration , 2005, astro-ph/0510661.

[43]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[44]  A. Fabian,et al.  On Viscosity, Conduction and Sound Waves in the Intracluster Medium , 2005, astro-ph/0501222.

[45]  G. Ghisellini,et al.  Structured jets in TeV BL Lac objects and radiogalaxies. Implications for the observed properties , 2004, astro-ph/0406093.

[46]  C. S. Crawford,et al.  A deep Chandra observation of the Perseus cluster: shocks and ripples , 2003, astro-ph/0306036.

[47]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[48]  R. Zavala,et al.  Faraday Rotation Measures in the Parsec-Scale Jets of the Radio Galaxies M87, 3C 111, and 3C 120 , 2002, astro-ph/0201458.

[49]  A. Merloni,et al.  Coronal outflow dominated accretion discs: a new possibility for low-luminosity black holes? , 2001, astro-ph/0112451.

[50]  A. Marscher,et al.  Monthly 43 GHz VLBA Polarimetric Monitoring of 3C 120 over 16 Epochs: Evidence for Trailing Shocks in a Relativistic Jet , 2001, astro-ph/0110133.

[51]  L. Tacconi-Garman,et al.  Integral Field Near-Infrared Spectroscopy of a Sample of Seyfert and LINER Galaxies. I. The Data , 2001, astro-ph/0104197.

[52]  Jorstad,et al.  Flashing superluminal components in the jet of the radio galaxy 3C120 , 2000, Science.

[53]  E. Quataert,et al.  Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization , 2000, astro-ph/0004286.

[54]  R. Narayan,et al.  Self-similar Accretion Flows with Convection , 1999, astro-ph/9912449.

[55]  J. M. Stone,et al.  The Formation and Structure of a Strongly Magnetized Corona above a Weakly Magnetized Accretion Disk , 1999, astro-ph/9912135.

[56]  V. Dhawan,et al.  VLBA Absorption Imaging of Ionized Gas Associated with the Accretion Disk in NGC 1275 , 1999, astro-ph/9909365.

[57]  J. Stone,et al.  The Formation and Structure of a Strongly Magnetized Corona above Weakly Magnetized Accretion Disks , 1999 .

[58]  A. Lobanov Spectral distributions in compact radio sources I. Imaging with VLBI data , 1998, astro-ph/9804112.

[59]  R. Vermeulen,et al.  A Radio Millihalo in the Nucleus of NGC 1275 , 1998 .

[60]  G. Taylor,et al.  The Parsec-Scale Structure of NGC 1275 at 1.3 GHz , 1996 .

[61]  V. Dhawan,et al.  Structure and evolution of the compact radio source in NGC 1275. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R. Vermeulen,et al.  Constraints on the Parsec-Scale Environment in NGC 1275 , 1995 .

[63]  R. Narayan,et al.  Advection-dominated Accretion: Self-Similarity and Bipolar Outflows , 1994, astro-ph/9411058.

[64]  D. Cioffi,et al.  Overpressured cocoons in extragalactic radio sources , 1989 .

[65]  D. Osterbrock Active Galactic Nuclei a , 1984 .

[66]  R. Laing A model for the magnetic-field structure in extended radio sources , 1980 .

[67]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .

[68]  J. Riley,et al.  The Morphology of Extragalactic Radio Sources of High and Low Luminosity , 1974 .