A comparison of parameter covariance estimation methods for item response models in an expectation-maximization framework

The Expectation-Maximization (EM) algorithm is a method for finding the maximum likelihood estimate of a model in the presence of missing data. Unfortunately, EM does not produce a parameter covariance matrix for standard errors. Both Oakes and Supplemented EM are methods for obtaining the parameter covariance matrix. SEM was discovered in 1991 and is implemented in both open-source and commercial item response model estimation software. Oakes, a more recent method discovered in 1999, had not been implemented in item response model software until now. Convergence properties, accuracy, and elapsed time of Oakes and Supplemental EM family algorithms are compared for a diverse selection IFA models. Oakes exhibits the best accuracy and elapsed time among algorithms compared. We recommend that Oakes be made available in item response model estimation software.

[1]  Li Cai,et al.  Generalized full-information item bifactor analysis. , 2011, Psychological methods.

[2]  R. Jennrich,et al.  Standard errors for EM estimation , 2000 .

[3]  William F. McComas,et al.  Programme for International Student Assessment (PISA) , 2014 .

[4]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[5]  Joshua N. Pritikin,et al.  Model Builder for Item Factor Analysis with OpenMx , 2016, R J..

[6]  Jolynn Pek,et al.  Profile Likelihood-Based Confidence Intervals and Regions for Structural Equation Models , 2015, Psychometrika.

[7]  Ke-Hai Yuan,et al.  Information Matrices and Standard Errors for MLEs of Item Parameters in IRT , 2014, Psychometrika.

[8]  Li Cai,et al.  HIGH-DIMENSIONAL EXPLORATORY ITEM FACTOR ANALYSIS BY A METROPOLIS–HASTINGS ROBBINS–MONRO ALGORITHM , 2010 .

[9]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[12]  R. Varadhan,et al.  Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm , 2008 .

[13]  Li Cai,et al.  A Comparison of Item Parameter Standard Error Estimation Procedures for Unidimensional and Multidimensional Item Response Theory Modeling , 2014 .

[14]  Li Cai,et al.  A Two-Tier Full-Information Item Factor Analysis Model with Applications , 2010 .

[15]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[16]  Joshua N. Pritikin,et al.  Modular Open-Source Software for Item Factor Analysis , 2015, Educational and psychological measurement.

[17]  正弘 玉木,et al.  PISA(Programme for International Student Assessment)で求められている読解力教育の重要性 , 2016 .

[18]  D. Oakes Direct calculation of the information matrix via the EM , 1999 .

[19]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[20]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[21]  Peter J. Fensham,et al.  Programme for International Student Assessment (PISA) , 2014 .

[22]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[23]  D. Thissen,et al.  Numerical Differentiation Methods for Computing Error Covariance Matrices in Item Response Theory Modeling , 2013 .

[24]  R. Mislevy Estimating latent distributions , 1984 .

[25]  Li Cai,et al.  The Nominal Categories Item Response Model , 2010 .

[26]  Joshua N. Pritikin A Computational Note on the Application of the Supplemented EM Algorithm to Item Response Models , 2016, 1605.00860.

[27]  Xiao-Li Meng,et al.  Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm , 1991 .

[28]  Li Cai,et al.  SEM of another flavour: two new applications of the supplemented EM algorithm. , 2008, The British journal of mathematical and statistical psychology.

[29]  M. Woodbury A missing information principle: theory and applications , 1972 .