A comparison of parameter covariance estimation methods for item response models in an expectation-maximization framework
暂无分享,去创建一个
[1] Li Cai,et al. Generalized full-information item bifactor analysis. , 2011, Psychological methods.
[2] R. Jennrich,et al. Standard errors for EM estimation , 2000 .
[3] William F. McComas,et al. Programme for International Student Assessment (PISA) , 2014 .
[4] Melvin R. Novick,et al. Some latent train models and their use in inferring an examinee's ability , 1966 .
[5] Joshua N. Pritikin,et al. Model Builder for Item Factor Analysis with OpenMx , 2016, R J..
[6] Jolynn Pek,et al. Profile Likelihood-Based Confidence Intervals and Regions for Structural Equation Models , 2015, Psychometrika.
[7] Ke-Hai Yuan,et al. Information Matrices and Standard Errors for MLEs of Item Parameters in IRT , 2014, Psychometrika.
[8] Li Cai,et al. HIGH-DIMENSIONAL EXPLORATORY ITEM FACTOR ANALYSIS BY A METROPOLIS–HASTINGS ROBBINS–MONRO ALGORITHM , 2010 .
[9] R. D. Bock,et al. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .
[10] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[11] F. Samejima. Estimation of latent ability using a response pattern of graded scores , 1968 .
[12] R. Varadhan,et al. Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm , 2008 .
[13] Li Cai,et al. A Comparison of Item Parameter Standard Error Estimation Procedures for Unidimensional and Multidimensional Item Response Theory Modeling , 2014 .
[14] Li Cai,et al. A Two-Tier Full-Information Item Factor Analysis Model with Applications , 2010 .
[15] L. Richardson. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .
[16] Joshua N. Pritikin,et al. Modular Open-Source Software for Item Factor Analysis , 2015, Educational and psychological measurement.
[17] 正弘 玉木,et al. PISA(Programme for International Student Assessment)で求められている読解力教育の重要性 , 2016 .
[18] D. Oakes. Direct calculation of the information matrix via the EM , 1999 .
[19] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[20] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[21] Peter J. Fensham,et al. Programme for International Student Assessment (PISA) , 2014 .
[22] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[23] D. Thissen,et al. Numerical Differentiation Methods for Computing Error Covariance Matrices in Item Response Theory Modeling , 2013 .
[24] R. Mislevy. Estimating latent distributions , 1984 .
[25] Li Cai,et al. The Nominal Categories Item Response Model , 2010 .
[26] Joshua N. Pritikin. A Computational Note on the Application of the Supplemented EM Algorithm to Item Response Models , 2016, 1605.00860.
[27] Xiao-Li Meng,et al. Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm , 1991 .
[28] Li Cai,et al. SEM of another flavour: two new applications of the supplemented EM algorithm. , 2008, The British journal of mathematical and statistical psychology.
[29] M. Woodbury. A missing information principle: theory and applications , 1972 .