Electrical Modeling of Long-Wavelength VCSELs for Intrinsic Parameters Extraction

We present an efficient method to model the small- signal modulation response of a long-wavelength VCSEL chip using an equivalent electrical circuit. This circuit serves two distinct purposes. Based on T-matrix formalism, it is used to remove the parasitics contribution originating from the electrical access of the chip in order to obtain the optical cavity intrinsic frequency response as defined by the rate equations. The same circuit is also used to extract the intrinsic cavity parameters since every circuit element represents a physical optical cavity entity. The extraction of reliable intrinsic parameters requires that the circuit element values be representative of the device under test. To achieve this, we have developed a new methodology based on static and dynamic measurements such as the S-parameters and the turn-on delay time. In accordance with this procedure, each element of the cavity is fixed without numerical optimization. The good agreement between measured and simulated curves confirm the validity of the technique used.

[1]  Jean-Pierre Leburton,et al.  Auger recombination in long-wavelength strained-layer quantum-well structures , 1995 .

[2]  VCSEL Intrinsic Response Extraction Using , 2009 .

[3]  Ivan P. Kaminow,et al.  High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers , 1984 .

[4]  J. Nishizawa,et al.  Impedance characteristics of double-hetero structure laser diodes , 1979 .

[5]  Andrei Caliman,et al.  VCSELs emitting in the 1310-nm waveband for novel optical communication applications , 2005, SPIE OPTO.

[6]  Julien Perchoux,et al.  Multimode VCSEL model for wide frequency-range RIN simulation , 2008 .

[7]  Amnon Yariv,et al.  Noise equivalent circuit of a semiconductor laser diode , 1982 .

[8]  J. Boucart,et al.  3.125-Gb/s modulation up to 70/spl deg/C using 1.3-/spl mu/m VCSELs fabricated with localized wafer fusion for 10GBASE LX4 applications , 2006, IEEE Photonics Technology Letters.

[9]  G. Boeck,et al.  Direct parameter-extraction method for laser diode rate-equation model , 2004, Journal of Lightwave Technology.

[10]  Wafer-fused 1550-nm band VCSELs with fundamental mode output exceeding 6 mW , 2008, 2008 34th European Conference on Optical Communication.

[11]  A. Larsson,et al.  High-Temperature Dynamics, High-Speed Modulation, and Transmission Experiments Using 1.3- $\mu\hbox{m}$ InGaAs Single-Mode VCSELs , 2007, Journal of Lightwave Technology.

[12]  Ian H. White,et al.  1.3-/spl mu/m quantum-well InGaAsP, AlGaInAs, and InGaAsN laser material gain: a theoretical study , 2002 .

[13]  W. Hofmann,et al.  10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs , 2006, IEEE Photonics Technology Letters.

[14]  L. Coldren,et al.  Design of index-guided vertical-cavity lasers for low temperature-sensitivity, sub-milliamp thresholds, and single-mode operation , 1995 .

[15]  Winston I. Way,et al.  Large signal nonlinear distortion prediction for a single-mode laser diode under microwave intensity modulation , 1987 .

[16]  Jay B. Kirk,et al.  Design and Characterization of 1 . 3-m AlGaInAs – InP Multiple-Quantum-Well Lasers , 2001 .

[17]  A. Syrbu,et al.  High Single Mode Power Wafer Fused InAlGaAs/InP -AlGaAs/GaAs VCSELs Emitting in the 1.3-1.6μm Wavelength Range , 2007, 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials.

[18]  H. Li,et al.  Vertical-cavity surface-emitting laser devices , 2003 .

[19]  R. Collin Foundations for microwave engineering , 1966 .

[20]  A Syrbu,et al.  10 Gbps VCSELs with High Single Mode Output in 1310nm and 1550 nm Wavelength Bands , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[21]  Rainer Michalzik,et al.  Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects , 1999 .

[22]  Jerome K. Butler,et al.  Design and characterization of 1.3-/spl mu/m AlGaInAs-InP multiple-quantum-well lasers , 2001 .

[23]  RodneyS. Tucker,et al.  Large-signal circuit model for simulation of injection-laser modulation dynamics , 1981 .

[24]  D. J. Pope,et al.  Microwave Circuit Models of Semiconductor Injection Lasers , 1982 .

[25]  Seoung-Hwan Park,et al.  Theory and experiment of In/sub 1-x/Ga/sub x/As/sub y/P/sub 1-y/ and In/sub 1-x-y/Ga/sub x/Al/sub y/As long-wavelength strained quantum-well lasers , 1999 .

[26]  E. Kapon,et al.  Threshold analysis of vertical-cavity surface-emitting lasers with intracavity contacts , 2006, IEEE Journal of Quantum Electronics.

[27]  A. Kasukawa,et al.  Compressively strained 1.3 mu m InAsP/InP and GaInAsP/InP multiple quantum well lasers for high-speed parallel data transmission systems , 1993 .

[28]  E. S. Bjorlin,et al.  Temperature dependence of the relaxation resonance frequency of long-wavelength vertical-cavity lasers , 2005, IEEE Photonics Technology Letters.

[29]  Sung-Mo Kang,et al.  A comprehensive circuit-level model of vertical-cavity surface-emitting lasers , 1999 .

[30]  A. Syrbu,et al.  High-performance single-mode VCSELs in the 1310-nm waveband , 2005, IEEE Photonics Technology Letters.

[31]  Amnon Yariv,et al.  The intrinsic electrical equivalent circuit of a laser diode , 1981 .

[32]  Richard A. Soref,et al.  Carrier-induced change in refractive index of InP, GaAs and InGaAsP , 1990 .

[33]  M. Majewski,et al.  A Critical Comparison of High-Speed VCSEL Characterization Techniques , 2007, Journal of Lightwave Technology.

[34]  J. Mollier,et al.  Noise equivalent circuit of a two-mode semiconductor laser with the contribution of both the linear and the nonlinear gain , 1997 .

[35]  Pierpaolo Boffi,et al.  High speed 1.3 mm VCSELs for 12.5 Gbit/s optical interconnects , 2008 .