A transport-based model of material trends in nonproportionality of scintillators

Electron-hole pairs created by the passage of a high-energy electron in a scintillator radiation detector find themselves in a very high radial concentration gradient of the primary electron track. Since nonlinear quenching that is generally regarded to be at the root of nonproportional response depends on the fourth or sixth power of the track radius in a cylindrical track model, radial diffusion of charge carriers and excitons on the ∼10 picosecond duration typical of nonlinear quenching can compete with and thereby modify that quenching. We use a numerical model of transport and nonlinear quenching to examine trends affecting local light yield versus excitation density as a function of charge carrier and exciton diffusion coefficients. Four trends are found: (1) nonlinear quenching associated with the universal “roll-off” of local light yield versus dE/dx is a function of the lesser of mobilities μe and μh or of DEXC as appropriate, spanning a broad range of scintillators and semiconductor detectors; (...

[1]  G. Bizarri,et al.  An analytical model of nonproportional scintillator light yield in terms of recombination rates , 2009 .

[2]  J. D. Valentine,et al.  Light yield nonproportionality of CsI(Tl), CsI(Na), and YAP , 1997 .

[3]  D. Wolski,et al.  YSO, LSO, CSO and LGSO. A study of energy resolution and nonproportionality , 1999 .

[4]  Roger G. Williams,et al.  Self-Trapped Excitons , 1993 .

[5]  W. W. Moses,et al.  Nonproportionality of Scintillator Detectors: Theory and Experiment. II , 2009, IEEE Transactions on Nuclear Science.

[6]  Energy and length scales in scintillator nonproportionality , 2007 .

[7]  C. Melcher Perspectives on the future development of new scintillators , 2005 .

[8]  A. Stoneham,et al.  The self-trapped hole in caesium halides , 1977 .

[9]  W. Moses,et al.  Scintillator Non-Proportionality: Present Understanding and Future Challenges , 2008, IEEE Transactions on Nuclear Science.

[10]  L. Trefilova,et al.  Time-resolved optical spectroscopy of CsI(Tl) crystals by pulsed electron beam irradiation , 2009 .

[11]  L. Swiderski,et al.  Energy Resolution of Scintillation Detectors—New Observations , 2008, IEEE Transactions on Nuclear Science.

[12]  J. Janak,et al.  Electronic Conduction in Solids , 1967 .

[13]  Woon-Seng Choong,et al.  Performance of a Facility for Measuring Scintillator Non-Proportionality , 2008, IEEE Transactions on Nuclear Science.

[14]  P. Dorenbos,et al.  Non-proportionality in the scintillation response and the energy resolution obtainable with scintill , 1995 .

[15]  C. V. Shank,et al.  Picosecond Optical Measurements of Band-to-Band Auger Recombination of High-Density Plasmas in Germanium , 1975 .

[16]  M. Moszynski,et al.  Intrinsic energy resolution of NaI(Tl) , 2002 .

[17]  Nikita Fedorov,et al.  Exciton-exciton interactions in CdWO4 irradiated by intense femtosecond vacuum ultraviolet pulses , 2009 .

[18]  William W. Moses,et al.  Excitation density, diffusion‐drift, and proportionality in scintillators , 2011 .

[19]  P. Dorenbos Fundamental Limitations in the Performance of ${\rm Ce}^{3+}$ –, ${\rm Pr}^{3+}$ –, and ${\rm Eu}^{2+}$ –Activated Scintillators , 2010 .

[20]  W. Dale Compton,et al.  Color centers in solids , 1962 .

[21]  William W Moses,et al.  Picosecond Studies of Transient Absorption Induced by BandGap Excitation of CsI and CsI:Tl at Room Temperature , 2010, IEEE Transactions on Nuclear Science.

[22]  S. Kerisit,et al.  Kinetic Monte Carlo Model of Scintillation Mechanisms in CsI and CsI(Tl) , 2008, IEEE Transactions on Nuclear Science.

[23]  R. James,et al.  Time of flight experimental studies of CdZnTe radiation detectors , 2000 .

[24]  R. B. Murray,et al.  Scintillation Response of Activated Inorganic Crystals to Various Charged Particles , 1961 .

[25]  G. H. Narayan,et al.  Electron responses and intrinsic line-widths in NaI(Tl) , 1969 .

[26]  M Kirm,et al.  Exciton–Exciton Interaction in CdWO$_{4}$ Under Resonant Excitation by Intense Femtosecond Laser Pulses , 2010, IEEE Transactions on Nuclear Science.

[27]  S. Kerisit,et al.  Computer simulation of the light yield nonlinearity of inorganic scintillators , 2009 .

[28]  R. B. Murray,et al.  Thermal Motion of Holes in Potassium Iodide , 1966 .

[29]  Anthony J. Peurrung,et al.  Energy nonlinearity in radiation detection materials: Causes and consequences , 2007 .

[30]  Victor F. Weisskopf,et al.  Theory of Impurity Scattering in Semiconductors , 1950 .

[31]  M. Klintenberg,et al.  The Quest for the Ideal Inorganic Scintillator , 2002 .

[32]  R. B. Murray,et al.  Intrinsic line broadening in NaI(Tl) gamma-ray spectrometers , 1961 .

[33]  Qi Li,et al.  Role of carrier diffusion and picosecond exciton kinetics in nonproportionality of scintillator light yield , 2010, Optical Engineering + Applications.

[34]  P. Iredale The effect of the non-proportional response of NaI(Tl) crystals to electrons upon the resolution for γ-rays , 1961 .

[35]  Nonproportional Response Between 0.1–100 keV Energy by Means of Highly Monochromatic Synchrotron X-Rays , 2010, IEEE Transactions on Nuclear Science.

[36]  R. Ahrenkiel,et al.  Electron Hall Mobility in the Alkali Halides , 1964 .

[37]  A J L Collinson,et al.  The Fluorescent Response of NaI(Tl) and CsI(Tl) to X Rays and ? Rays , 1963 .

[38]  Helmuth Spieler,et al.  Semiconductor Detector Systems , 2005 .

[39]  H. B. Dietrich,et al.  Kinetics of Self-Trapped Holes in Alkali-Halide Crystals: Experiments in NaI(Tl) and KI(Tl) , 1973 .

[40]  A. Vasil’ev,et al.  From Luminescence Non-Linearity to Scintillation Non-Proportionality , 2008, IEEE Transactions on Nuclear Science.

[41]  H. Fröhlich Electrons in lattice fields , 1954 .

[42]  J. D. Valentine,et al.  The light yield nonproportionality component of scintillator energy resolution , 1997, IEEE Nuclear Science Symposium Conference Record.

[43]  S. Kubota,et al.  Scintillation Process in NaI(Tl): Comparison with Scintillation Models , 2000 .

[44]  S. Curtarolo,et al.  Comparative Study of Nonproportionality and Electronic Band Structures Features in Scintillator Materials , 2009, IEEE Transactions on Nuclear Science.

[45]  David J. Singh Near optical isotropy in noncubic SrI2: Density functional calculations , 2008 .