Integrality, duality and finiteness in combinatoric topological strings

Abstract A remarkable result at the intersection of number theory and group theory states that the order of a finite group G (denoted |G|) is divisible by the dimension dR of any irreducible complex representation of G. We show that the integer ratios $$ {\left|G\right|}^2/{d}_R^2 $$ G 2 / d R 2 are combinatorially constructible using finite algorithms which take as input the amplitudes of combinatoric topological strings (G-CTST) of finite groups based on 2D Dijkgraaf-Witten topological field theories (G-TQFT2). The ratios are also shown to be eigenvalues of handle creation operators in G-TQFT2/G-CTST. These strings have recently been discussed as toy models of wormholes and baby universes by Marolf and Maxfield, and Gardiner and Megas. Boundary amplitudes of the G-TQFT2/G-CTST provide algorithms for combinatoric constructions of normalized characters. Stringy S-duality for closed G-CTST gives a dual expansion generated by disconnected entangled surfaces. There are universal relations between G-TQFT2 amplitudes due to the finiteness of the number K of conjugacy classes. These relations can be labelled by Young diagrams and are captured by null states in an inner product constructed by coupling the G-TQFT2 to a universal TQFT2 based on symmetric group algebras. We discuss the scenario of a 3D holographic dual for this coupled theory and the implications of the scenario for the factorization puzzle of 2D/3D holography raised by wormholes in 3D.

[1]  Y. Kimura Multi-Matrix Models and Noncommutative Frobenius Algebras Obtained from Symmetric Groups and Brauer Algebras , 2014, 1403.6572.

[2]  Matthias Christandl,et al.  Nonvanishing of Kronecker coefficients for rectangular shapes , 2009, 0910.4512.

[3]  Finite factorization equations and sum rules for BPS correlators in /N=4 SYM theory , 2002, hep-th/0205221.

[4]  The string theory approach to generalized 2D Yang-Mills theory , 1994, hep-th/9407114.

[5]  B. Simon Representations of finite and compact groups , 1995 .

[6]  S. Coleman Black holes as red herrings: topological fluctuations and the loss of quantum coherence , 1988 .

[7]  E. Sharpe Categorical Equivalence and the Renormalization Group , 2019, Fortschritte der Physik.

[8]  Michael Stephanou,et al.  Exact multi-restricted Schur polynomial correlators , 2008, 0805.3025.

[9]  Exact Correlators of Giant Gravitons from dual N=4 SYM , 2001, hep-th/0111222.

[10]  S. Giddings,et al.  Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity , 1988 .

[11]  R. Bhattacharyya,et al.  Exact multi-matrix correlators , 2008, 0801.2061.

[12]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[13]  M. Fukuma,et al.  Lattice topological field theory in two dimensions , 1994 .

[14]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[15]  Greta Panova,et al.  On the largest Kronecker and Littlewood-Richardson coefficients , 2018, J. Comb. Theory, Ser. A.

[16]  Giant gravitons in conformal field theory , 2001, hep-th/0107119.

[17]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[18]  E. Buffenoir,et al.  Two dimensional lattice gauge theory based on a quantum group , 1994 .

[19]  Arun Ram,et al.  Combinatorial Representation Theory , 1997, math/9707221.

[20]  D. Freed,et al.  Chern-Simons theory with finite gauge group , 1991, hep-th/9111004.

[21]  S. Ramgoolam,et al.  Enhanced symmetries of gauge theory and resolving the spectrum of local operators , 2008, 0807.3696.

[22]  Dijkgraaf–Witten invariants of surfaces and projective representations of groups , 2007, 0706.0160.

[23]  Correlators, probabilities and topologies in = 4 SYM , 2006, hep-th/0611290.

[24]  Juan Maldacena,et al.  AdS3 black holes and a stringy exclusion principle , 1998 .

[25]  Vishnu Jejjala,et al.  Toric CFTs, permutation triples, and Belyi pairs , 2010, 1012.2351.

[26]  J. Maldacena,et al.  Bubbling AdS space and 1/2 BPS geometries , 2004, hep-th/0409174.

[27]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[28]  Lajos Rónyai,et al.  Computing irreducible representations of finite groups , 1989, 30th Annual Symposium on Foundations of Computer Science.

[29]  J. Maldacena The Large N limit of superconformal field theories and supergravity , 1998 .

[30]  E. Sharpe,et al.  Cluster decomposition, T-duality, and gerby CFTs , 2006, hep-th/0606034.

[31]  G. Segal,et al.  D-branes and K-theory in 2D topological field theory , 2006, hep-th/0609042.

[32]  Vishnu Jejjala,et al.  The beta ansatz: a tale of two complex structures , 2011, 1104.5490.

[33]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[34]  P. Heslop,et al.  Diagonal free field matrix correlators, global symmetries and giant gravitons , 2008, 0806.1911.

[35]  Gerhard J. A. Schneider Dixon's Character Table Algorithm Revisited , 1990, J. Symb. Comput..

[36]  Combinatorial quantization of the Hamiltonian Chern-Simons theory I , 1994, hep-th/9403066.

[37]  E. Witten,et al.  Topological gauge theories and group cohomology , 1990 .

[38]  John D. Dixon,et al.  High speed computation of group characters , 1967 .

[39]  James Read,et al.  Hecke Groups, Dessins d'Enfants, and the Archimedean Solids , 2013, Front. Phys..

[40]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[41]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[42]  S. Shenker,et al.  JT gravity as a matrix integral , 2019, 1903.11115.

[43]  S. Raju,et al.  An infalling observer in AdS/CFT , 2012, 1211.6767.

[44]  S. Shenker,et al.  Wormholes without averaging , 2021, Journal of High Energy Physics.

[45]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[46]  S. Ramgoolam Schur‐Weyl Duality as an Instrument of Gauge‐String Duality , 2008, 0804.2764.

[47]  S. Ramgoolam,et al.  From Matrix Models and quantum fields to Hurwitz space and the absolute Galois group , 2010, 1002.1634.

[48]  S. Ramgoolam,et al.  Quivers as calculators: counting, correlators and Riemann surfaces , 2013, 1301.1980.

[49]  Edward Hirst,et al.  Machine-Learning Dessins d'Enfants: Explorations via Modular and Seiberg-Witten Curves , 2020 .

[50]  D. M. Clark Theory of Groups , 2012 .

[51]  D. Marolf,et al.  Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information , 2020, Journal of High Energy Physics.

[52]  N. Itzhaki,et al.  Large branes in AdS and their field theory dual , 2000 .

[53]  Integrability vs. information loss: a simple example , 2006, hep-th/0602263.

[54]  A. Altland,et al.  Late time physics of holographic quantum chaos , 2020, SciPost Physics.

[55]  Oscillating multiple giants , 2021, 2101.05310.

[56]  Michael Walter,et al.  On vanishing of Kronecker coefficients , 2015, computational complexity.

[57]  T. Vandermeulen,et al.  A generalization of decomposition in orbifolds , 2021, Journal of High Energy Physics.

[58]  E. Rabinovici,et al.  On effective theories of topological strings , 1992 .

[59]  Christopher Lewis-Brown,et al.  Quarter-BPS states, multi-symmetric functions and set partitions , 2020, Journal of High Energy Physics.

[60]  A. Mednykh Nonequivalent coverings of Riemann surfaces with a prescribed ramification type , 1984 .

[61]  S. Ramgoolam,et al.  Branes, anti-branes and Brauer algebras in gauge-gravity duality , 2007, 0709.2158.

[62]  Note on S -channel factorization in multitrace Berenstein-Maldacena-Nastase correlators , 2019, Physical Review D.

[63]  D. Wise,et al.  Hopf algebra gauge theory on a ribbon graph , 2015, Reviews in Mathematical Physics.

[64]  Word-Induced Measures on Compact Groups , 2011, 1102.4353.

[65]  E. Witten On quantum gauge theories in two dimensions , 1991 .

[66]  Peter Bürgisser,et al.  The complexity of computing Kronecker coefficients , 2008 .

[67]  Invasion of the giant gravitons from Anti-de Sitter space , 2000, hep-th/0003075.

[68]  C. Meusburger Kitaev Lattice Models as a Hopf Algebra Gauge Theory , 2016, 1607.01144.

[69]  P. Heslop,et al.  Diagonal multi-matrix correlators and BPS operators in N=4 SYM , 2007, 0711.0176.

[70]  Wormholes in AdS , 2004, hep-th/0401024.