Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review

Numerical simulation is a fundamental instrument for the elaboration and assessment of a strategic utilization of geothermal energy. It can be used for the evaluation of both the natural (unperturbed) state and the production scenarios. The motivation and important role of the numerical models are described here and deeply illustrated in the context of the geothermal energy exploitation. The mathematical–physical background is also briefly illustrated, together with all the practical problems of modeling and implementation. Particular attention must be paid to the boundary conditions and thermophysical parameters assignment and calibration. The reliability of the model must be accurately evaluated, in order to prevent common failures in design and running of the energy conversion units and wells. Several case studies are reviewed and discussed, and a final discussion is presented. The limits of the reservoir modeling and simulation are also outlined in a general methodological perspective of integrated analysis. The scenarios modeled and assessed can be then used as practical tools for the sizing and optimization of the power unit or direct heat utilization.

[1]  K. Pruess,et al.  The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and non-condensible gas , 1997 .

[2]  V. Stefánsson,et al.  World Geothermal Assessment , 2005 .

[3]  D. Bullivant,et al.  Computer modelling of the Wairakei–Tauhara geothermal system, New Zealand , 2004 .

[4]  A. Yani,et al.  Sustainable development of the Kamojang geothermal field , 2010 .

[5]  P. Romagnoli,et al.  An updated numerical model of the Larderello-Travale geothermal system, Italy. , 2010 .

[6]  Stefan Finsterle,et al.  Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia , 2008 .

[7]  Philipp Blum,et al.  Review on life cycle environmental effects of geothermal power generation , 2013 .

[8]  C. Calore,et al.  Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia , 2002 .

[9]  Alessandro Franco,et al.  An integrated “Reservoir-Plant” strategy for a sustainable and efficient use of geothermal resources , 2012 .

[10]  S. Ehara,et al.  A preliminary regional geothermal assessment of the Gulf of Suez, Egypt , 2011 .

[11]  Toshiaki Tanaka,et al.  GIS integration model for geothermal exploration and well siting , 2008 .

[12]  Hany S. Mesbah,et al.  Exploration and assessment of the geothermal resources in the Hammam Faraun hot spring, Sinai Peninsula, Egypt , 2012 .

[13]  R. Dipippo Geothermal power plants : principles, applications, case studies and environmental impact , 2008 .

[14]  Alessandro Franco,et al.  Optimal design of binary cycle power plants for water-dominated, medium-temperature geothermal fields , 2009 .

[15]  Magdalena Scheck-Wenderoth,et al.  Geothermal energy in sedimentary basins: What we can learn from regional numerical models , 2010 .

[16]  M. O'Sullivan,et al.  A history of numerical modelling of the Wairakei geothermal field , 2009 .

[17]  M. O'Sullivan,et al.  Reinjection in geothermal fields: A review of worldwide experience , 2011 .

[18]  Daniel Sutter,et al.  Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs , 2013 .

[20]  Michael A. Hicks,et al.  A prototype design model for deep low-enthalpy hydrothermal systems , 2015 .

[21]  P. F. Bixley,et al.  Evolution of the Wairakei geothermal reservoir during 50 years of production , 2009 .

[22]  S. Verma,et al.  Three dimensional temperature simulation from cooling of two magma chambers in the Las Tres Vírgenes geothermal field, Baja California Sur, Mexico , 2013 .

[23]  Sanaz Saeid,et al.  An efficient computational model for deep low-enthalpy geothermal systems , 2013, Comput. Geosci..

[24]  Pierre Ungemach,et al.  Renewability versus Sustainability. A Reservoir Management Approach. , 2007 .

[25]  Tetsuya Yahara,et al.  Sustainability of the Hatchobaru geothermal field, Japan , 2010 .

[26]  Umberta Tinivella,et al.  Thermal modelling of the Larderello geothermal field (Tuscany, Italy) , 2008 .

[27]  Y. Duan,et al.  Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids , 2015 .

[28]  P. Romagnoli,et al.  A Review of the Mt. Amiata Geothermal System (Italy) , 2010 .

[29]  R. Itoi,et al.  Production capacity estimation by reservoir numerical simulation of northwest (NW) Sabalan geotherma , 2011 .

[30]  Günter Zimmermann,et al.  3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir , 2010 .

[31]  J. W. Pritchett,et al.  NUMERICAL SIMULATION OF THE SUMIKAWA GEOTHERMAL FIELD IN THE NATURAL STATE , 1991 .

[32]  Sadiq J. Zarrouk,et al.  Numerical modelling of production from the Poihipi dry steam zone: Wairakei geothermal system, New Zealand , 2007 .

[33]  V. Stefánsson,et al.  Geothermal reinjection experience , 1997 .

[34]  H. Lei,et al.  Numerical modeling of exploitation and reinjection of the Guantao geothermal reservoir in Tanggu District, Tianjin, China , 2013 .

[35]  Alessandro Franco,et al.  Power Production from a Moderate Temperature Geothermal Resource with Regenerative Organic Rankine Cycles , 2011 .

[36]  Emilio Antunez,et al.  Tough2/PC application simulation project for Heber geothermal field, California, a progress report , 1996 .

[37]  Reinjection strategy for geothermal systems , 1995 .

[38]  AN UPDATE OF THE NATURAL STATE NUMERICAL MODEL OF OLKARIA GEOTHERMAL SYSTEM, KENYA , 2003 .

[39]  G. Axelsson Sustainable geothermal utilization – Case histories; definitions; research issues and modelling , 2010 .

[40]  E. Porras,et al.  Numerical modeling of the Momotombo geothermal system, Nicaragua , 2007 .

[41]  Darius Mottaghy,et al.  The geothermal project Den Haag: 3D numerical models for temperature prediction and reservoir simula , 2011 .

[42]  Yu-Chao Zeng,et al.  Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field , 2013 .

[43]  Philipp Blum,et al.  Sustainability and policy for the thermal use of shallow geothermal energy , 2013 .

[44]  Darius Mottaghy,et al.  Modeling contribution to risk assessment of thermal production power for geothermal reservoirs , 2013 .

[45]  Yu-Shu Wu,et al.  A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs , 2013 .

[46]  Michael O'Sullivan,et al.  State-of-the-art of geothermal reservoir simulation , 2001 .