Manipulation of micro- and nanostructure motion with magnetic fields.

In this review we will focus on how magnetic fields can be used to manipulate the motion of various micro- and nanostructures in solution. We will distinguish between ferromagnetic, paramagnetic and diamagnetic materials. Furthermore, the use of various kinds of magnetic fields, such as homogeneous, inhomogeneous and rotating magnetic fields, is discussed. To date most research has focused on the use of ferro- and paramagnetic materials, but here we also describe the possibilities of magnetic manipulation of diamagnetic materials. Since the vast majority of soft matter is diamagnetic, this paves the way for many new applications to manipulate the motion of micro- and nanostructures.

[1]  Thomas E. Mallouk,et al.  Autonomously Moving Local Nanoprobes in Heterogeneous Magnetic Fields , 2007 .

[2]  Gary Friedman,et al.  Magnetic separation, manipulation and assembly of solid phase in fluids , 2005 .

[3]  P. Fischer,et al.  Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. , 2011, Nanoscale.

[4]  P. Vogel,et al.  Nature's design of nanomotors. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[5]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[6]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[7]  Saurabh Basu,et al.  Stable Magnetic Chemical Locomotive with Pd Nanoparticle Incorporated Ferromagnetic Oxide , 2011 .

[8]  Martin A M Gijs,et al.  Microfluidic applications of magnetic particles for biological analysis and catalysis. , 2010, Chemical reviews.

[9]  S. Foner High-field magnets and high-field superconductors , 1995, IEEE Transactions on Applied Superconductivity.

[10]  P. Christianen,et al.  Molecular organization of cylindrical sexithiophene aggregates measured by X-ray scattering and magnetic alignment. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[11]  Tsunehisa Kimura,et al.  Three-dimensional crystal alignment using a time-dependent elliptic magnetic field. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[12]  Igor F. Lyuksyutov,et al.  On-chip manipulation of levitated femtodroplets , 2004 .

[13]  E. W. Meijer,et al.  Magnetic deformation of self-assembled sexithiophene spherical nanocapsules. , 2005, Journal of the American Chemical Society.

[14]  K. Arai,et al.  Micro swimming mechanisms propelled by external magnetic fields , 1996 .

[15]  Patrick E. Phelan,et al.  Dynamics of rotating paramagnetic particle chains simulated by particle dynamics, Stokesian dynamics and lattice Boltzmann methods , 2008 .

[16]  G. Whitesides,et al.  Propulsion of flexible polymer structures in a rotating magnetic field , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Sirilak Sattayasamitsathit,et al.  Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. , 2010, Small.

[18]  Stephen J. Ebbens,et al.  In pursuit of propulsion at the nanoscale , 2010 .

[19]  A. Butykai,et al.  Malaria pigment crystals as magnetic micro-rotors: key for high-sensitivity diagnosis , 2013, Scientific reports.

[20]  E. W. Meijer,et al.  Magnetic alignment of self-assembled anthracene organogel fibers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[21]  C. Kittel Introduction to solid state physics , 1954 .

[22]  Jiahua Zhu,et al.  Polymersome stomatocytes: controlled shape transformation in polymer vesicles. , 2010, Journal of the American Chemical Society.

[23]  Walter F Paxton,et al.  Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. , 2005, Angewandte Chemie.

[24]  Ben L Feringa,et al.  The art of building small: from molecular switches to molecular motors. , 2007, The Journal of organic chemistry.

[25]  K. Guevorkian,et al.  Aligning Paramecium caudatum with static magnetic fields. , 2006, Biophysical journal.

[26]  S. Nishijima,et al.  High Gradient Superconducting Magnetic Separation for Iron Removal From the Glass Polishing Waste , 2011, IEEE Transactions on Applied Superconductivity.

[27]  A. Gast,et al.  Micromixing with linked chains of paramagnetic particles. , 2004, Analytical chemistry.

[28]  Joseph Wang,et al.  Hybrid nanomotor: a catalytically/magnetically powered adaptive nanowire swimmer. , 2011, Small.

[29]  Sylvain Martel,et al.  Magnetic Steering of Iron Oxide Microparticles Using Propulsion Gradient Coils in MRI , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[30]  Roland Zengerle,et al.  Controlled counter-flow motion of magnetic bead chains rolling along microchannels , 2011 .

[31]  H. Shimizu Effect of Molecular Shape on Nuclear Magnetic Relaxation , 1962 .

[32]  Pietro Tierno,et al.  Autonomously moving catalytic microellipsoids dynamically guided by external magnetic fields. , 2010, Small.

[33]  Y. Tanimoto,et al.  Magnetic Separation of Metal Ions , 2003 .

[34]  Gyoujin Cho,et al.  Phospholipid bicelles that align with their normals parallel to the magnetic field. , 2002, Journal of the American Chemical Society.

[35]  M. Tarn,et al.  On-chip diamagnetic repulsion in continuous flow , 2009, Science and technology of advanced materials.

[36]  W. Helfrich Lipid bilayer spheres: Deformation and birefringence in magnetic fields , 1973 .

[37]  F. Perrin,et al.  Mouvement brownien d'un ellipsoide - I. Dispersion diélectrique pour des molécules ellipsoidales , 1934 .

[38]  Charles R. Mace,et al.  Magnetic levitation in the analysis of foods and water. , 2010, Journal of agricultural and food chemistry.

[39]  Fumiko Kimura,et al.  Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[40]  M. Boamfa,et al.  Magnetic field induced alignment of cyanine dye J-aggregates , 2002 .

[41]  H. Watarai,et al.  Magnetoanalysis of micro/nanoparticles: a review. , 2011, Analytica chimica acta.

[42]  Shuhong Yu,et al.  Biogenic and biomimetic magnetic nanosized assemblies , 2012 .

[43]  Ignacio Pagonabarraga,et al.  Magnetically actuated colloidal microswimmers. , 2008, The journal of physical chemistry. B.

[44]  Sylvain Martel,et al.  Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system , 2006, IEEE Transactions on Biomedical Engineering.

[45]  E. W. Meijer,et al.  Anharmonic magnetic deformation of self-assembled molecular nanocapsules. , 2007, Physical review letters.

[46]  Saurabh Basu,et al.  Veering the motion of a magnetic chemical locomotive in a liquid. , 2008, The Journal of chemical physics.

[47]  C. Kumar,et al.  Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. , 2011, Advanced drug delivery reviews.

[48]  Denys Makarov,et al.  Fuel-free locomotion of Janus motors: magnetically induced thermophoresis. , 2013, ACS nano.

[49]  Raymond Kapral,et al.  Perspective: nanomotors without moving parts that propel themselves in solution. , 2013, The Journal of chemical physics.

[50]  Thomas M Fischer,et al.  Orientations of overdamped magnetic nanorod-gyroscopes. , 2007, Nano letters.

[51]  A. Hamasaki,et al.  Colloid and Interface Chemistry under Magnetic Fields , 2012 .

[52]  Donald E Ingber,et al.  Combined microfluidic-micromagnetic separation of living cells in continuous flow , 2006, Biomedical microdevices.

[53]  Yasuhiro Ikezoe,et al.  Separation of feeble magnetic particles with magneto-Archimedes levitation , 2002 .

[54]  Wei Gao,et al.  Nano/Microscale motors: biomedical opportunities and challenges. , 2012, ACS nano.

[55]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[56]  Y. Tanimoto,et al.  Separation of Transition Metal Ions in an Inhomogeneous Magnetic Field , 2001 .

[57]  M. Boamfa,et al.  Alignment of molecular materials in high magnetic fields , 2004 .

[58]  Y. Tanimoto,et al.  Movement and diffusion of paramagnetic ions in a magnetic field. , 2006, The journal of physical chemistry. B.

[59]  Adam R. Urbach,et al.  Sub-100 nm confinement of magnetic nanoparticles using localized magnetic field gradients. , 2003, Journal of the American Chemical Society.

[60]  Elazer R. Edelman,et al.  Adv. Drug Delivery Rev. , 1997 .

[61]  J. V. van Hest,et al.  Controlled shape transformation of polymersome stomatocytes. , 2011, Angewandte Chemie.

[62]  Darrell Velegol,et al.  Magnetic enhancement of phototaxing catalytic motors. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[63]  J. Kohlbrecher,et al.  Alignment of bicelles studied with high-field magnetic birefringence and small-angle neutron scattering measurements. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[64]  George M Whitesides,et al.  The force acting on a superparamagnetic bead due to an applied magnetic field. , 2007, Lab on a chip.

[65]  Denys Makarov,et al.  Control over Janus micromotors by the strength of a magnetic field. , 2013, Nanoscale.

[66]  Mark A. Hayes,et al.  Video microscopy of dynamically aggregated paramagnetic particle chains in an applied rotating magnetic field , 2003 .

[67]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[68]  P. Wust,et al.  Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles , 1999 .

[69]  R. Tournier,et al.  Levitation of organic materials , 1991, Nature.

[70]  D. Wilson,et al.  Entrapment of metal nanoparticles in polymer stomatocytes. , 2012, Journal of the American Chemical Society.

[71]  A. Gast,et al.  Rotational dynamics of semiflexible paramagnetic particle chains. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  D. D. de Leeuw,et al.  High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. , 2005, Journal of the American Chemical Society.

[73]  T. Maekawa,et al.  Ordered complex structures formed by paramagnetic particles via self-assembly under an ac/dc combined magnetic field. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[74]  T. Yamane,et al.  Uniaxial alignment of the smallest diamagnetic susceptibility axis using time-dependent magnetic fields. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[75]  G. Whitesides,et al.  Density-based diamagnetic separation: devices for detecting binding events and for collecting unlabeled diamagnetic particles in paramagnetic solutions. , 2007, Analytical chemistry.

[76]  Anna Whyatt,et al.  Notes and references , 1984, International Journal of Legal Information : Official Publication.

[77]  G. Whitesides,et al.  A magnetic trap for living cells suspended in a paramagnetic buffer , 2004 .

[78]  S. A. Hunt,et al.  MAGNETICALLY ALIGNED MEMBRANE MODEL SYSTEMS WITH POSITIVE ORDER PARAMETER : SWITCHING THE SIGN OF SZZ WITH PARAMAGNETIC IONS , 1996 .

[79]  G. Whitesides,et al.  Autonomous Movement and Self‐Assembly , 2002 .

[80]  Andre K. Geim,et al.  Diamagnetic levitation: Flying frogs and floating magnets (invited) , 2000 .

[81]  Junjie Zhu,et al.  On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets , 2012 .

[82]  Nicole Pamme,et al.  Magnetism and microfluidics. , 2006, Lab on a chip.

[83]  J C Williams,et al.  Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Marc Fermigier,et al.  Permanently Linked Monodisperse Paramagnetic Chains , 1998 .

[85]  Jun Hee Lee,et al.  Fabrication and magnetic control of bacteria-inspired robotic microswimmers , 2010 .

[86]  C. Pidgeon,et al.  Magnetically induced orientation of phosphatidylcholine membranes. , 1993, Biochimica et biophysica acta.

[87]  Martin A. M. Gijs,et al.  Magnetic bead handling on-chip: new opportunities for analytical applications , 2004 .

[88]  N. Hirota,et al.  Separation of Collagen by Magneto-Archimedes Levitation , 2007, IEEE Transactions on Applied Superconductivity.

[89]  M. Muir Physical Chemistry , 1888, Nature.

[90]  Tom H Johansen,et al.  Colloidal transport on magnetic garnet films. , 2009, Physical chemistry chemical physics : PCCP.

[91]  S. Glotzer,et al.  Liquid crystal order in colloidal suspensions of spheroidal particles by direct current electric field assembly. , 2012, Small.

[92]  Roland Zengerle,et al.  Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. , 2010, Lab on a chip.

[93]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[94]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[95]  B. Bagchi,et al.  Anisotropic diffusion of spheroids in liquids: Slow orientational relaxation of the oblates , 2002 .

[96]  F. Herlach,et al.  Strong and ultrastrong magnetic fields and their applications: introduction , 1985 .

[97]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[98]  Nam-Trung Nguyen,et al.  Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale , 2012 .

[99]  Joseph Wang,et al.  Motion control at the nanoscale. , 2010, Small.

[100]  Nicole Pamme,et al.  Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles , 2012 .

[101]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[102]  Martin Pumera,et al.  Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro‐objects , 2010 .

[103]  R. Liburdy,et al.  Magnetic deformation of phospholipid bilayers: Effects on liposome shape and solute permeability at prephase transition temperatures , 1988 .

[104]  Samuel Sanchez,et al.  Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. , 2012, ACS nano.

[105]  Daniela A Wilson,et al.  Autonomous movement of platinum-loaded stomatocytes. , 2012, Nature chemistry.

[106]  Y. Tanimoto,et al.  On the Movement of Paramagnetic Ions in an Inhomogeneous Magnetic Field , 2004 .

[107]  Q. Pankhurst,et al.  Progress in applications of magnetic nanoparticles in biomedicine , 2009 .

[108]  Pietro Tierno,et al.  Magnetically Driven Janus Micro‐Ellipsoids Realized via Asymmetric Gathering of the Magnetic Charge , 2011, Advanced materials.

[109]  Shoogo Ueno,et al.  Magneto-Archimedes separation and its application to the separation of biological materials , 2004 .

[110]  Michael V Berry,et al.  Of flying frogs and levitrons , 1997 .