Learning Spatially-correlated Temporal Dictionaries for Calcium Imaging

Calcium imaging has become a fundamental neural imaging technique, aiming to recover the individual activity of hundreds of neurons in a cortical region. Current methods (mostly matrix factorization) are aimed at detecting neurons in the field-of-view and then inferring the corresponding time-traces. In this paper, we reverse the modeling and instead aim to minimize the spatial inference, while focusing on finding the set of temporal traces present in the data. We reframe the problem in a dictionary learning setting, where the dictionary contains the time-traces and the sparse coefficient are spatial maps. We adapt dictionary learning to calcium imaging by introducing constraints on the norms and correlations of the time-traces, and incorporating a hierarchical spatial filtering model that correlates the time-trace usage over the field-of-view. We demonstrate on synthetic and real data that our solution has advantages regarding initialization, implicitly inferring number of neurons and simultaneously detecting different neuronal types.

[1]  Toru Aonishi,et al.  Detecting cells using non-negative matrix factorization on calcium imaging data , 2014, Neural Networks.

[2]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[3]  Fred A. Hamprecht,et al.  Sparse Space-Time Deconvolution for Calcium Image Analysis , 2014, NIPS.

[4]  Adam S. Charles,et al.  Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS) , 2016, Nature Methods.

[5]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[6]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[7]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[8]  Christopher J. Rozell,et al.  Spectral Superresolution of Hyperspectral Imagery Using Reweighted $\ell_{1}$ Spatial Filtering , 2014, IEEE Geoscience and Remote Sensing Letters.

[9]  Bruno A. Olshausen,et al.  Group Sparse Coding with a Laplacian Scale Mixture Prior , 2010, NIPS.

[10]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[11]  Guillermo Sapiro,et al.  Dictionary Learning for Noisy and Incomplete Hyperspectral Images , 2012, SIAM J. Imaging Sci..

[12]  Michael Elad,et al.  On the Role of Sparse and Redundant Representations in Image Processing , 2010, Proceedings of the IEEE.

[13]  Ronald R. Coifman,et al.  Automated cellular structure extraction in biological images with applications to calcium imaging data , 2018, bioRxiv.

[14]  John B. Greer,et al.  Sparse Demixing of Hyperspectral Images , 2012, IEEE Transactions on Image Processing.

[15]  Adam S. Charles,et al.  Detecting and correcting false transients in calcium imaging , 2018, Nature Methods.

[16]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[17]  H. Sebastian Seung,et al.  Automatic Neuron Detection in Calcium Imaging Data Using Convolutional Networks , 2016, NIPS.

[18]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[19]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[20]  Noah Simon,et al.  SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA. , 2017, The annals of applied statistics.

[21]  Pier Luigi Dragotti,et al.  ABLE: An Activity-Based Level Set Segmentation Algorithm for Two-Photon Calcium Imaging Data , 2017, eNeuro.

[22]  Lin Tian,et al.  Neural activity imaging with genetically encoded calcium indicators. , 2012, Progress in brain research.

[23]  Liam Paninski,et al.  Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions , 2013, NIPS.

[24]  Bruno A. Olshausen,et al.  Learning Sparse Codes for Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[25]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[26]  M. Mank,et al.  Genetically encoded calcium indicators. , 2008, Chemical reviews.

[27]  Matthias Bethge,et al.  Standardizing and benchmarking data analysis for calcium imaging , 2017 .

[28]  Mario Dipoppa,et al.  Suite2p: beyond 10,000 neurons with standard two-photon microscopy , 2016, bioRxiv.

[29]  Adam M. Packer,et al.  Extracting regions of interest from biological images with convolutional sparse block coding , 2013, NIPS.