Gradient recovery for elliptic interface problem: III. Nitsche's method

Abstract This is the third paper on the study of gradient recovery for elliptic interface problems. In our previous works Guo and Yang (2017) [23] , we developed gradient recovery methods for elliptic interface problems based on body-fitted meshes and immersed finite element methods. Despite the efficiency and accuracy that these methods bring to recover the gradient, there are still some cases in unfitted meshes where skinny triangles appear in the generated local body-fitted triangulations that destroy the accuracy of recovered gradient near the interface. In this paper, we propose a gradient recovery technique based on Nitsche's method for elliptic interface problems, which avoids the loss of accuracy of gradient near the interface caused by skinny triangles. We analyze the supercloseness between the gradient of the numerical solution by the Nitsche's method and the gradient of the interpolation of the exact solution, which leads to the superconvergence of the proposed gradient recovery method. We also present several numerical examples to validate the theoretical results.

[1]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[2]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[3]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[4]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[5]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[6]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[7]  Shan Zhao,et al.  High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources , 2006, J. Comput. Phys..

[8]  Guo-Wei Wei,et al.  On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method , 2006, J. Comput. Phys..

[9]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[10]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[11]  Zhilin Li,et al.  A Symmetric and Consistent Immersed Finite Element Method for Interface Problems , 2014, J. Sci. Comput..

[12]  Long Chen,et al.  Adaptive Mesh Refinement and Superconvergence for Two-Dimensional Interface Problems , 2014, SIAM J. Sci. Comput..

[13]  R. Fedkiw,et al.  A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .

[14]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[15]  So-Hsiang Chou,et al.  An Immersed Linear Finite Element Method with Interface Flux Capturing Recovery , 2012 .

[16]  Zhilin Li,et al.  Accurate gradient computations at interfaces using finite element methods , 2017, Int. J. Appl. Math. Comput. Sci..

[17]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[18]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[19]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[20]  Zhimin Zhang,et al.  Superconvergence of partially penalized immersed finite element methods , 2018 .

[21]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[22]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[23]  Xiaohong Chen,et al.  Accurate Solution and Gradient Computation for Elliptic Interface Problems with Variable Coefficients , 2017, SIAM J. Numer. Anal..

[24]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[26]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[27]  Eftychios Sifakis,et al.  ' s personal copy A second order virtual node method for elliptic problems with interfaces and irregular domains , 2010 .

[28]  P. Hansbo,et al.  A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD , 2003 .

[29]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[30]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[31]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[32]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[33]  Zhimin Zhang,et al.  Gradient Recovery for the Crouzeix–Raviart Element , 2015, J. Sci. Comput..

[34]  So-Hsiang Chou,et al.  Flux Recovery and Superconvergence of Quadratic Immersed Interface Finite Elements , 2015 .

[35]  Peng Song,et al.  A weak formulation for solving elliptic interface problems without body fitted grid , 2013, J. Comput. Phys..

[36]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[37]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[38]  Xu-dong Liu,et al.  A numerical method for solving variable coefficient elliptic equation with interfaces , 2005 .

[39]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..

[40]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[41]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[42]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[43]  Ted Belytschko,et al.  The extended finite element method for rigid particles in Stokes flow , 2001 .

[44]  Hailong Guo,et al.  Gradient recovery for elliptic interface problem: I. body-fitted mesh , 2016, 1607.05898.

[45]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[46]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[47]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[48]  Gunilla Kreiss,et al.  A uniformly well-conditioned, unfitted Nitsche method for interface problems , 2013 .

[49]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[50]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[51]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[52]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[53]  Zhilin Li A Fast Iterative Algorithm for Elliptic Interface Problems , 1998 .

[54]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[55]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[56]  Frédéric Gibou,et al.  Solving elliptic problems with discontinuities on irregular domains - the Voronoi Interface Method , 2015, J. Comput. Phys..

[57]  Junping Wang,et al.  A new weak Galerkin finite element method for elliptic interface problems , 2016, J. Comput. Phys..

[58]  Xiaoming Zheng,et al.  An interface-fitted adaptive mesh method for elliptic problems and its application in free interface problems with surface tension , 2016, Adv. Comput. Math..

[59]  Zhimin Zhang,et al.  Superconvergence analysis of partially penalized immersed finite element method , 2017, 1702.02603.

[60]  Ronald Fedkiw,et al.  A review of level-set methods and some recent applications , 2018, J. Comput. Phys..

[61]  Peter Hansbo,et al.  Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .

[62]  Liqun Wang,et al.  Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces , 2010, J. Comput. Phys..

[63]  Xu Yang,et al.  Polynomial Preserving Recovery for High Frequency Wave Propagation , 2017, J. Sci. Comput..

[64]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[65]  Shan Zhao,et al.  WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS. , 2013, Journal of computational physics.