Gradient recovery for elliptic interface problem: III. Nitsche's method
暂无分享,去创建一个
Xu Yang | Hailong Guo | Hailong Guo | Xu Yang
[1] O. C. Zienkiewicz,et al. The Finite Element Method: Its Basis and Fundamentals , 2005 .
[2] R. LeVeque,et al. A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .
[3] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[4] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[5] James H. Bramble,et al. A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..
[6] T. Hou,et al. Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .
[7] Shan Zhao,et al. High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources , 2006, J. Comput. Phys..
[8] Guo-Wei Wei,et al. On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method , 2006, J. Comput. Phys..
[9] Tao Lin,et al. New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.
[10] P. Hansbo,et al. A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .
[11] Zhilin Li,et al. A Symmetric and Consistent Immersed Finite Element Method for Interface Problems , 2014, J. Sci. Comput..
[12] Long Chen,et al. Adaptive Mesh Refinement and Superconvergence for Two-Dimensional Interface Problems , 2014, SIAM J. Sci. Comput..
[13] R. Fedkiw,et al. A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .
[14] Tao Lin,et al. Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..
[15] So-Hsiang Chou,et al. An Immersed Linear Finite Element Method with Interface Flux Capturing Recovery , 2012 .
[16] Zhilin Li,et al. Accurate gradient computations at interfaces using finite element methods , 2017, Int. J. Appl. Math. Comput. Sci..
[17] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[18] C. Peskin. Numerical analysis of blood flow in the heart , 1977 .
[19] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[20] Zhimin Zhang,et al. Superconvergence of partially penalized immersed finite element methods , 2018 .
[21] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[22] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[23] Xiaohong Chen,et al. Accurate Solution and Gradient Computation for Elliptic Interface Problems with Variable Coefficients , 2017, SIAM J. Numer. Anal..
[24] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[25] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[26] T. Belytschko,et al. The extended/generalized finite element method: An overview of the method and its applications , 2010 .
[27] Eftychios Sifakis,et al. ' s personal copy A second order virtual node method for elliptic problems with interfaces and irregular domains , 2010 .
[28] P. Hansbo,et al. A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD , 2003 .
[29] P. Hansbo,et al. A cut finite element method for a Stokes interface problem , 2012, 1205.5684.
[30] Zhilin Li. The immersed interface method using a finite element formulation , 1998 .
[31] Zhilin Li,et al. An immersed finite element space and its approximation capability , 2004 .
[32] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[33] Zhimin Zhang,et al. Gradient Recovery for the Crouzeix–Raviart Element , 2015, J. Sci. Comput..
[34] So-Hsiang Chou,et al. Flux Recovery and Superconvergence of Quadratic Immersed Interface Finite Elements , 2015 .
[35] Peng Song,et al. A weak formulation for solving elliptic interface problems without body fitted grid , 2013, J. Comput. Phys..
[36] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[37] Ivo Babuska,et al. The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.
[38] Xu-dong Liu,et al. A numerical method for solving variable coefficient elliptic equation with interfaces , 2005 .
[39] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..
[40] Ahmed Naga,et al. THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .
[41] Peter Hansbo,et al. CutFEM: Discretizing geometry and partial differential equations , 2015 .
[42] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[43] Ted Belytschko,et al. The extended finite element method for rigid particles in Stokes flow , 2001 .
[44] Hailong Guo,et al. Gradient recovery for elliptic interface problem: I. body-fitted mesh , 2016, 1607.05898.
[45] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[46] P. Hansbo,et al. A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .
[47] John E. Dolbow,et al. A robust Nitsche’s formulation for interface problems , 2012 .
[48] Gunilla Kreiss,et al. A uniformly well-conditioned, unfitted Nitsche method for interface problems , 2013 .
[49] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[50] P. Hansbo,et al. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .
[51] Ted Belytschko,et al. Elastic crack growth in finite elements with minimal remeshing , 1999 .
[52] Zhilin Li,et al. The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .
[53] Zhilin Li. A Fast Iterative Algorithm for Elliptic Interface Problems , 1998 .
[54] Peter Hansbo,et al. Nitsche's method for interface problems in computa‐tional mechanics , 2005 .
[55] J. Zou,et al. Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .
[56] Frédéric Gibou,et al. Solving elliptic problems with discontinuities on irregular domains - the Voronoi Interface Method , 2015, J. Comput. Phys..
[57] Junping Wang,et al. A new weak Galerkin finite element method for elliptic interface problems , 2016, J. Comput. Phys..
[58] Xiaoming Zheng,et al. An interface-fitted adaptive mesh method for elliptic problems and its application in free interface problems with surface tension , 2016, Adv. Comput. Math..
[59] Zhimin Zhang,et al. Superconvergence analysis of partially penalized immersed finite element method , 2017, 1702.02603.
[60] Ronald Fedkiw,et al. A review of level-set methods and some recent applications , 2018, J. Comput. Phys..
[61] Peter Hansbo,et al. Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .
[62] Liqun Wang,et al. Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces , 2010, J. Comput. Phys..
[63] Xu Yang,et al. Polynomial Preserving Recovery for High Frequency Wave Propagation , 2017, J. Sci. Comput..
[64] P. Hansbo,et al. Fictitious domain finite element methods using cut elements , 2012 .
[65] Shan Zhao,et al. WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS. , 2013, Journal of computational physics.