An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces
暂无分享,去创建一个
[1] Willy Dörfler,et al. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..
[2] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[3] G. Dziuk,et al. An algorithm for evolutionary surfaces , 1990 .
[4] T. Apel,et al. Clement-type interpolation on spherical domains—interpolation error estimates and application to a posteriori error estimation , 2005 .
[5] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[6] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[7] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .
[8] Michael J. Holst,et al. Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..
[9] Andreas Veeser,et al. A posteriori error estimators, gradient recovery by averaging, and superconvergence , 2006, Numerische Mathematik.
[10] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[11] Carsten Carstensen,et al. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.
[12] Martin Rumpf,et al. A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..
[13] Willy Dörfler,et al. An adaptive finite element method for a linear elliptic equation with variable coefficients , 2000 .
[14] Ricardo H. Nochetto,et al. A finite element method for surface diffusion: the parametric case , 2005 .
[15] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[16] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[17] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..