INK 4 a / ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p 53

chemoresistance by disabling p53 mutations accelerate lymphomagenesis and promote INK4a/ARF Service Email Alerting click here. right corner of the article or Receive free email alerts when new articles cite this article-sign up in the box at the top

[1]  M. Roussel,et al.  Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. , 1999, Genes & development.

[2]  K. Kinzler,et al.  Disruption of p53 in human cancer cells alters the responses to therapeutic agents. , 1999, The Journal of clinical investigation.

[3]  A. Levine,et al.  P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Y. Xiong,et al.  Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. , 1999, Molecular cell.

[5]  Charles J. Sherr,et al.  Nucleolar Arf sequesters Mdm2 and activates p53 , 1999, Nature Cell Biology.

[6]  B. Wouters,et al.  Apoptosis, p53, and tumor cell sensitivity to anticancer agents. , 1999, Cancer research.

[7]  S. Lowe,et al.  Apoptosis and therapy , 1999, The Journal of pathology.

[8]  S. Lowe,et al.  Clinical implications of p53 mutations , 1999, Cellular and Molecular Life Sciences CMLS.

[9]  A. Berns,et al.  Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. , 1999, Genes & development.

[10]  G. Peters,et al.  The p16INK4a/CDKN2A tumor suppressor and its relatives. , 1998, Biochimica et biophysica acta.

[11]  C. Prives Signaling to p53 Breaking the MDM2–p53 Circuit , 1998, Cell.

[12]  A. Giaccia,et al.  The complexity of p53 modulation: emerging patterns from divergent signals. , 1998, Genes & development.

[13]  C. Sherr,et al.  Tumor surveillance via the ARF-p53 pathway. , 1998, Genes & development.

[14]  Karen H. Vousden,et al.  p14ARF links the tumour suppressors RB and p53 , 1998, Nature.

[15]  M. Serrano,et al.  p19ARF links the tumour suppressor p53 to Ras , 1998, Nature.

[16]  Kevin Ryan,et al.  The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2 , 1998, The EMBO journal.

[17]  J L Cleveland,et al.  Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. , 1998, Genes & development.

[18]  S. Lowe,et al.  E1A signaling to p53 involves the p19(ARF) tumor suppressor. , 1998, Genes & development.

[19]  F. Zindy,et al.  Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Ken Chen,et al.  The Ink4a Tumor Suppressor Gene Product, p19Arf, Interacts with MDM2 and Neutralizes MDM2's Inhibition of p53 , 1998, Cell.

[21]  Yue Xiong,et al.  ARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways , 1998, Cell.

[22]  D. Haber Splicing into Senescence: The Curious Case of p16 and p19ARF , 1997, Cell.

[23]  Richard A. Ashmun,et al.  Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product p19 ARF , 1997, Cell.

[24]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[25]  W. Wilson,et al.  Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin's lymphomas. , 1997, Blood.

[26]  L. Chin,et al.  Role of the INK4a Locus in Tumor Suppression and Cell Mortality , 1996, Cell.

[27]  Thierry Soussi,et al.  P53 Gene Mutation: Software and Database , 1996, Nucleic Acids Res..

[28]  T. McDonnell,et al.  Evidence that c-myc mediated apoptosis does not require wild-type p53 during lymphomagenesis. , 1995, Oncogene.

[29]  K. Kohn,et al.  p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. , 1994, Cancer research.

[30]  M. Hsiao,et al.  Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. , 1994, Blood.

[31]  H. Hermeking,et al.  Mediation of c-Myc-induced apoptosis by p53. , 1994, Science.

[32]  R. Weinberg,et al.  Tumor spectrum analysis in p53-mutant mice , 1994, Current Biology.

[33]  B. Quesnel,et al.  p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. , 1994, Blood.

[34]  G. Hannon,et al.  A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 , 1993, Nature.

[35]  D. Housman,et al.  p53-dependent apoptosis modulates the cytotoxicity of anticancer agents , 1993, Cell.

[36]  S. Lowe,et al.  Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. , 1993, Genes & development.

[37]  E. Newcomb,et al.  p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. , 1993, Blood.

[38]  B. Vogelstein,et al.  A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia , 1992, Cell.

[39]  R. Weinberg,et al.  Effects of an Rb mutation in the mouse , 1992, Nature.

[40]  B. Vogelstein,et al.  Participation of p53 protein in the cellular response to DNA damage. , 1991, Cancer research.

[41]  S. Cory,et al.  Transgenic models for haemopoietic malignancies. , 1991, Biochimica et biophysica acta.

[42]  A. Strasser,et al.  Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2 , 1990, Nature.

[43]  R. Palmiter,et al.  The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice , 1985, Nature.