TBA*: Time-Bounded A*

Real-time heuristic search algorithms are used for planning by agents in situations where a constant-bounded amount of deliberation time is required for each action regardless of the problem size. Such algorithms interleave their planning and execution to ensure real-time response. Furthermore, to guarantee completeness, they typically store improved heuristic estimates for previously expanded states. Although subsequent planning steps can benefit from updated heuristic estimates, many of the same states are expanded over and over again. Here we propose a variant of the A* algorithm, Time-Bounded A* (TBA*), that guarantees real-time response. In the domain of path-finding on videogame maps TBA* expands an order of magnitude fewer states than traditional real-time search algorithms, while finding paths of comparable quality. It reaches the same level of performance as recent state-of-the-art real-time search algorithms but, unlike these, requires neither state-space abstractions nor pre-computed pattern databases.

[1]  Eduardo M. Morales,et al.  LEARNING PLAYING STRATEGIES IN CHESS , 1996, Comput. Intell..

[2]  Vadim Bulitko,et al.  Real-Time Heuristic Search with a Priority Queue , 2007, IJCAI.

[3]  Hendrik Blockeel,et al.  Top-Down Induction of First Order Logical Decision Trees , 1998, AI Commun..

[4]  David A. Cohn,et al.  Improving generalization with active learning , 1994, Machine Learning.

[5]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[6]  Daniel Gooch,et al.  Communications of the ACM , 2011, XRDS.

[7]  Sebastian Thrun,et al.  Anytime Dynamic A*: An Anytime, Replanning Algorithm , 2005, ICAPS.

[8]  Toru Ishida,et al.  Moving Target Search with Intelligence , 1992, AAAI.

[9]  Jonathan Schaeffer,et al.  Fringe Search: Beating A* at Pathfinding on Game Maps , 2005, CIG.

[10]  Sven Koenig,et al.  A comparison of fast search methods for real-time situated agents , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[11]  Richard E. Korf,et al.  Iterative-Deepening-A*: An Optimal Admissible Tree Search , 1985, IJCAI.

[12]  R. Kaye Minesweeper is NP-complete , 2000 .

[13]  Nathan R. Sturtevant,et al.  Partial Pathfinding Using Map Abstraction and Refinement , 2005, AAAI.

[14]  Jonathan Schaeffer,et al.  Dynamic Control in Real-Time Heuristic Search , 2008, J. Artif. Intell. Res..

[15]  Johannes Fürnkranz,et al.  Integrative Windowing , 1998, J. Artif. Intell. Res..

[16]  Darwin Klingman,et al.  Shortest path forest with topological ordering: An algorithm description in SDL , 1980 .

[17]  Stefan Wrobel,et al.  On the Stability of Example-Driven Learning Systems: A Case Study in Multirelational Learning , 2002, MICAI.

[18]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[19]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[20]  Michael Buro,et al.  Improving heuristic mini-max search by supervised learning , 2002, Artif. Intell..

[21]  Gerald Tesauro,et al.  Temporal Difference Learning and TD-Gammon , 1995, J. Int. Comput. Games Assoc..

[22]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[23]  R. Mike Cameron-Jones,et al.  Induction of logic programs: FOIL and related systems , 1995, New Generation Computing.

[24]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[25]  Richard E. Korf,et al.  Real-Time Heuristic Search , 1990, Artif. Intell..

[26]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[27]  Stephen Muggleton,et al.  Relational Rule Induction with CProgol4.4: A Tutorial Introduction , 2001 .

[28]  Nobuhiro Inuzuka,et al.  Inducing Shogi Heuristics Using Inductive Logic Programming , 1998, ILP.

[29]  Nathan R. Sturtevant,et al.  Graph Abstraction in Real-time Heuristic Search , 2007, J. Artif. Intell. Res..

[30]  Stefan Wrobel,et al.  Macro-Operators in Multirelational Learning: A Search-Space Reduction Technique , 2002, ECML.