Kinetics of flow stress in ultra-pure tantalum single crystals in stress/temperature regime III

[1]  M. Khaleeq-ur-Rahman,et al.  On the strain-rate dependence of flow stress in crystals with high intrinsic lattice friction , 2009 .

[2]  Carlos N. Tomé,et al.  A dislocation-based constitutive law for pure Zr including temperature effects , 2008 .

[3]  M. Z. Butt Kinetics of flow stress in crystals with high intrinsic lattice friction , 2007 .

[4]  V. Moskalenko,et al.  The role of Peierls relief in the low-temperature plasticity of pure α‐Ti , 2005 .

[5]  George Z. Voyiadjis,et al.  A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures , 2005 .

[6]  R. Kapoor,et al.  Deformation in Zr–1Nb–1Sn–0.1Fe using stress relaxation technique , 2002 .

[7]  S. Nemat-Nasser,et al.  Deformation behavior of tantalum and a tantalum tungsten alloy , 2001 .

[8]  S. Nemat-Nasser,et al.  A model for experimentally-observed high-strain-rate dynamic strain aging in titanium , 2000 .

[9]  J. Hirth,et al.  Deformation by a kink mechanism in high temperature materials , 1999 .

[10]  Toshio Suzuki,et al.  Plastic homology of bcc metals , 1999 .

[11]  Kirchner,et al.  Yield strength of diamond. , 1995, Physical review letters.

[12]  M. Kaufman,et al.  On evaluating the flow stress in niobium of commercial purity , 1995 .

[13]  M. Werner Temperature and strain‐rate dependence of the flow stress of ultrapure tantalum single crystals , 1987 .

[14]  D. Brunner,et al.  The use of stress‐relaxation measurements for investigations on the flow stress of α‐iron , 1987 .

[15]  J. Diehl,et al.  On the characteristic features of solution softening and hardening in B.C.C. metals , 1976 .

[16]  D. Quesnel,et al.  Solution softening and hardening in the IronCarbon system , 1975 .

[17]  R. Arsenault The double-kink model for low-temperature deformation of B.C.C. metals and solid solutions , 1967 .