Characterizing genetically stable and unstable gastric cancers by microsatellites and array comparative genomic hybridization.

[1]  A. Sajantila,et al.  DNA copy number aberrations in intestinal-type gastric cancer revealed by array-based comparative genomic hybridization. , 2006, Cancer genetics and cytogenetics.

[2]  S. Knuutila,et al.  Amplified, lost, and fused genes in 11q23–25 amplicon in acute myeloid leukemia, an array‐CGH study , 2006, Genes, chromosomes & cancer.

[3]  L. Hawthorn,et al.  Novel amplicons on the short arm of chromosome 7 identified using high resolution array CGH contain over expressed genes in addition to EGFR in glioblastoma multiforme , 2005, Genes, chromosomes & cancer.

[4]  P. Pelicci,et al.  Frequent loss of heterozygosity without loss of genetic material in acute myeloid leukemia with a normal karyotype , 2005, Genes, chromosomes & cancer.

[5]  Peter J. Park,et al.  Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data , 2005, Bioinform..

[6]  Sakari Knuutila,et al.  Darpp-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. , 2005, Cancer research.

[7]  Mattias Höglund,et al.  Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications , 2005, Oncogene.

[8]  Kylie L. Gorringe,et al.  Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization , 2005, Genes, chromosomes & cancer.

[9]  Hidetaka Mochizuki,et al.  Screening of DNA copy‐number aberrations in gastric cancer cell lines by array‐based comparative genomic hybridization , 2005, Cancer science.

[10]  S. Knuutila,et al.  Gene amplifications in osteosarcoma—CGH microarray analysis , 2005, Genes, chromosomes & cancer.

[11]  N. Carter,et al.  Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma , 2005, Oncogene.

[12]  D. Pinkel,et al.  Genomic Alterations in Primary Gastric Adenocarcinomas Correlate with Clinicopathological Characteristics and Survival , 2004, Cellular oncology : the official journal of the International Society for Cellular Oncology.

[13]  C. Lengauer,et al.  Aneuploidy and cancer , 2004, Nature.

[14]  S. Knuutila,et al.  Helicobacter pylori infection activates FOS and stress‐response genes and alters expression of genes in gastric cancer–specific loci , 2004, Genes, chromosomes & cancer.

[15]  Jane Fridlyand,et al.  High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization. , 2004, Carcinogenesis.

[16]  N. Carter,et al.  Array Comparative Genomic Hybridization Analysis of Colorectal Cancer Cell Lines and Primary Carcinomas , 2004, Cancer Research.

[17]  J. Veltman,et al.  Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines. , 2004, Cancer research.

[18]  C. Moskaluk,et al.  Coamplified and overexpressed genes at ERBB2 locus in gastric cancer , 2004, International journal of cancer.

[19]  Sakari Knuutila,et al.  Clustering of molecular alterations in gastroesophageal carcinomas. , 2004, Neoplasia.

[20]  R. Tang,et al.  Colorectal cancer without high microsatellite instability and chromosomal instability--an alternative genetic pathway to human colorectal cancer. , 2003, Carcinogenesis.

[21]  Bauke Ylstra,et al.  Determination of amplicon boundaries at 20q13.2 in tissue samples of human gastric adenocarcinomas by high‐resolution microarray comparative genomic hybridization , 2003, The Journal of pathology.

[22]  Kathleen R. Cho,et al.  Novel candidate targets of beta-catenin/T-cell factor signaling identified by gene expression profiling of ovarian endometrioid adenocarcinomas. , 2003, Cancer research.

[23]  K. Gish,et al.  Detailed gene copy number and RNA expression analysis of the 17q12–23 region in primary breast cancers , 2003, Genes, chromosomes & cancer.

[24]  N. Wong,et al.  Positional mapping for amplified DNA sequences on 1q21-q22 in hepatocellular carcinoma indicates candidate genes over-expression. , 2003, Journal of hepatology.

[25]  D. Demetrick,et al.  Loss of Heterozygosity Associated with Uniparental Disomy in Breast Carcinoma , 2002, Modern Pathology.

[26]  C. Moskaluk,et al.  Gastric cancers overexpress DARPP-32 and a novel isoform, t-DARPP. , 2002, Cancer research.

[27]  L. Aaltonen,et al.  Does MSI‐low exist? , 2002, The Journal of pathology.

[28]  P. V. van Diest,et al.  New chromosomal regions with high‐level amplifications in squamous cell carcinomas of the larynx and pharynx, identified by comparative genomic hybridization , 2001, The Journal of pathology.

[29]  Michael L. Bittner,et al.  Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  K. Kinzler,et al.  Mechanisms underlying losses of heterozygosity in human colorectal cancers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Sheu,et al.  Correlation of histologic subtypes and replication error phenotype with comparative genomic hybridization in gastric cancer , 2001, Genes, chromosomes & cancer.

[32]  Yusuke Nakamura,et al.  Nonrandom Chromosomal Imbalances in Esophageal Squamous Cell Carcinoma Cell Lines: Possible Involvement of the ATF3 and CENPF Genes in the 1q32 Amplicon , 2000, Japanese journal of cancer research : Gann.

[33]  S. Knuutila,et al.  Online access to CGH data of DNA sequence copy number changes. , 2000, The American journal of pathology.

[34]  Y. Chung,et al.  Prognostic implications of microsatellite genotypes in gastric carcinoma , 2000, International journal of cancer.

[35]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy number variation in breast cancer using DNA microarrays , 1999, Nature Genetics.

[36]  T Takahashi,et al.  Gains, losses, and amplifications of genomic materials in primary gastric cancers analyzed by comparative genomic hybridization , 1999, Genes, chromosomes & cancer.

[37]  K. Kinzler,et al.  Genetic instabilities in human cancers , 1998, Nature.

[38]  S Srivastava,et al.  A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. , 1998, Cancer research.

[39]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[40]  S. Knuutila,et al.  17q12‐21 amplicon, a novel recurrent genetic change in intestinal type of gastric carcinoma: A comparative genomic hybridization study , 1997, Genes, chromosomes & cancer.

[41]  G. Thomas,et al.  BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. , 1997, Cancer research.

[42]  P. Laurén,et al.  THE TWO HISTOLOGICAL MAIN TYPES OF GASTRIC CARCINOMA: DIFFUSE AND SO-CALLED INTESTINAL-TYPE CARCINOMA. AN ATTEMPT AT A HISTO-CLINICAL CLASSIFICATION. , 1965, Acta pathologica et microbiologica Scandinavica.

[43]  A. Sajantila,et al.  Differences in genomic instability between intestinal- and diffuse-type gastric cancer , 2005, Gastric Cancer.

[44]  D. Edwards,et al.  Metalloproteinases and their inhibitors in tumor angiogenesis , 2005, International journal of cancer.

[45]  Elena Marchiori,et al.  Breakpoint identification and smoothing of array comparative genomic hybridization data , 2004, Bioinform..

[46]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999 .

[47]  Elias S. J. Arnér,et al.  Properties and levels of deoxynucleoside kinases in normal and tumor cells; implications for chemotherapy. , 1994, Advances in enzyme regulation.