Enumeration of (p, q)-parking functions
暂无分享,去创建一个
[1] Julian D. Gilbey,et al. Parking functions, valet functions and priority queues , 1999 .
[2] A. Joyal,et al. Une th6orie combinatoire des s6ries formelles , 1981 .
[3] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[4] Julian D. Gilbey,et al. Parking functions, valet functions and priority queues , 1999, Discret. Math..
[5] John Riordan,et al. Mappings of acyclic and parking functions , 1974 .
[6] Aryeh Dvoretzky,et al. The asymptotic density of certain sets of real numbers , 1947 .
[7] Richard P. Stanley,et al. Hyperplane Arrangements, Parking Functions and Tree Inversions , 1998 .
[8] A. Konheim,et al. An Occupancy Discipline and Applications , 1966 .
[9] M. Lothaire,et al. Combinatorics on words: Frontmatter , 1997 .
[10] Germain Kreweras,et al. Sur les partitions non croisees d'un cycle , 1972, Discret. Math..
[11] Satya N. Majumdar,et al. Equivalence between the Abelian sandpile model and the q→0 limit of the Potts model , 1992 .
[12] Robert Cori,et al. On the Sandpile Group of Dual Graphs , 2000, Eur. J. Comb..
[13] Laurent Chottin,et al. Énumération d'arbres et formules d'inversion de séries formellles , 1981, J. Comb. Theory, Ser. B.
[14] Gilbert Labelle,et al. Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange , 1981 .
[15] Norman Biggs. The Tutte Polynomial as a Growth Function , 1999 .
[16] Richard P. Stanley,et al. Parking functions and noncrossing partitions , 1996, Electron. J. Comb..
[17] Dhar,et al. Self-organized critical state of sandpile automaton models. , 1990, Physical review letters.
[18] Mark Haiman,et al. Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .
[19] Rodica Simion,et al. Chains in the lattice of noncrossing partitions , 1994, Discret. Math..