BiCGStab(ℓ) for Families of Shifted Linear Systems

We consider a seed system Ax = b together with a shifted linear system of the formWe develop modifications of the BiCGStab(ℓ) method which allow to solve the seed and the shifted system at the expense of just the matrix-vector multiplications needed to solve Ax = b via BiCGStab(ℓ). On the shifted system, these modifications do not perform the corresponding BiCGStab(ℓ)-method, but we show, that in the case that A is positive real and σ ≥ 0, the resulting method is still a well-smoothed variant of BiCG. Numerical examples from an application arising in quantum chromodynamics are given to illustrate the efficiency of the method developed.

[1]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[2]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[3]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[4]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[5]  Andreas Frommer,et al.  Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..

[6]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[7]  D. R. Fokkema,et al.  BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .

[8]  B. Jegerlehner Krylov space solvers for shifted linear systems , 1996, hep-lat/9612014.

[9]  Th. Lippert,et al.  Accelerating Wilson Fermion Matrix Inversions By Means Of The Stabilized Biconjugate Gradient Algorithm , 1994 .

[10]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[11]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[12]  R. Freund Solution of shifted linear systems by quasi-minimal residual iterations , 1993 .

[13]  B. Jegerlehner Multiple mass solvers , 1998 .

[14]  H. V. D. Vorst,et al.  Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.

[15]  V. Simoncini Restarted Full Orthogonalization Method for Shifted Linear Systems , 2003 .

[16]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[17]  Andreas Frommer,et al.  MANY MASSES ON ONE STROKE: ECONOMIC COMPUTATION OF QUARK PROPAGATORS , 1995 .

[18]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[19]  Andreas Frommer,et al.  Fast CG-Based Methods for Tikhonov-Phillips Regularization , 1999, SIAM J. Sci. Comput..

[20]  Kenneth G. Wilson,et al.  Quarks and Strings on a Lattice , 1977 .