Important roles of native-oxides on the electronic band offsets at Ge-oxide/Ge(0 0 1) heterojunction in ambient environment

[1]  Basic Notions , 2020, English around the World.

[2]  C. Hwang,et al.  A first-principles study of the structural and electronic properties of the epitaxial Ge(1 1 1)/La2O3(0 0 1) heterostructure , 2019, Journal of Physics D: Applied Physics.

[3]  C. Hwang,et al.  Orientation-dependent structural and electronic properties of Ge/a-GeO2 interfaces: first-principles study , 2019, Journal of Physics D: Applied Physics.

[4]  Hyunsoo Yang,et al.  Interface Engineering and Emergent Phenomena in Oxide Heterostructures , 2018, Advanced materials.

[5]  T. Venkatesan,et al.  Large Enhancement of 2D Electron Gases Mobility Induced by Interfacial Localized Electron Screening Effect , 2018, Advanced materials.

[6]  A. Mosleh,et al.  Investigation of GeSn Strain Relaxation and Spontaneous Composition Gradient for Low-Defect and High-Sn Alloy Growth , 2018, Scientific Reports.

[7]  Yu Yang Tuning thermal stability and electronic properties of germanium oxide on Ge(001) surface with the incorporation of nitrogen , 2018 .

[8]  P. Yu,et al.  Engineering magnetism at functional oxides interfaces: manganites and beyond , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  A. Toriumi,et al.  Impact of GeO2 passivation layer quality on band alignment at GeO2/Ge interface studied by internal photoemission spectroscopy , 2016 .

[10]  John Robertson,et al.  Selective Passivation of GeO2/Ge Interface Defects in Atomic Layer Deposited High-k MOS Structures. , 2015, ACS applied materials & interfaces.

[11]  S. Manna,et al.  Multilayer Ge nanocrystals embedded within Al2O3 matrix for high performance floating gate memory devices , 2015 .

[12]  Mantu K. Hudait,et al.  Germanium Based Field-Effect Transistors: Challenges and Opportunities , 2014, Materials.

[13]  Min Kyu Kim,et al.  The effect of La2O3-incorporation in HfO2 dielectrics on Ge substrate by atomic layer deposition , 2013 .

[14]  Geert Hellings,et al.  Invited) Status and Trends in Ge CMOS Technology , 2013 .

[15]  A. Toriumi Recent progress of Germanium MOSFETs , 2012, IMFEDK 2012.

[16]  K. Saraswat,et al.  GeSn technology: Extending the Ge electronics roadmap , 2011, 2011 International Electron Devices Meeting.

[17]  J. Robertson,et al.  Atomic structure, electronic structure, and band offsets at Ge:GeO:GeO2 interfaces , 2010 .

[18]  G. Lucovsky,et al.  Preparation of Native Oxide and Carbon-Minimized Ge Surface by NH4OH -Based Cleaning for High-k ∕ Ge MOS Gate Stacks , 2009 .

[19]  Jisheng Pan,et al.  Impact of oxide defects on band offset at GeO2/Ge interface , 2009 .

[20]  A. Stesmans,et al.  Electronic structure of GeO2-passivated interfaces of (100)Ge with Al2O3 and HfO2 , 2008 .

[21]  K. Opsomer,et al.  Germanium: The Past and Possibly a Future Material for Microelectronics , 2007, ECS Transactions.

[22]  M. Caymax,et al.  Electrical Passivation of the (100)Ge Surface by Its Thermal Oxide , 2007 .

[23]  Marc Heyns,et al.  Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide , 2007 .

[24]  M. Perego,et al.  Fabrication of GeO2 layers using a divalent Ge precursor , 2007 .

[25]  Olivier Renault,et al.  High-resolution photoelectron spectroscopy of Ge-based HfO2 gate stacks , 2007 .

[26]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[27]  P. Kirsch,et al.  Wet Chemical Cleaning of Germanium Surfaces for Growth of High-k Dielectrics , 2006 .

[28]  K. Saraswat,et al.  Study of Germanium Surface in Wet Chemical Solutions for Surface Cleaning Applications , 2006 .

[29]  Y. Chabal,et al.  Hydrogen passivation of germanium (100) surface using wet chemical preparation , 2005 .

[30]  K. Saraswat,et al.  Chemical states and electronic structure of a HfO(-2) / Ge(001) interface , 2005 .

[31]  R. Hesse,et al.  Improved accuracy of quantitative XPS analysis using predetermined spectrometer transmission functions with UNIFIT 2004 , 2005 .

[32]  A. Stesmans,et al.  Energy band alignment at the (100)Ge/HfO2 interface , 2004 .

[33]  Z. Hussain,et al.  High resolution XPS study of oxide layers grown on Ge substrates , 2003 .

[34]  M. Heyns,et al.  Characterization of ALCVD-Al2O3 and ZrO2 layer using X-ray photoelectron spectroscopy , 2002 .

[35]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[36]  T. Akane,et al.  Carbon contamination free Ge(100) surface cleaning for MBE , 1998 .

[37]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[38]  Toshio Ogino,et al.  Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study , 1995 .

[39]  J. Bean,et al.  An efficient method for cleaning Ge(100) surface , 1994 .

[40]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.

[41]  E. A. Kraut,et al.  Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .

[42]  H. Nakagawa,et al.  Photoemission Study of Ultrathin GeO2/Ge Heterostructures Formed by UV-O3 Oxidation , 2006 .

[43]  G. Hughes,et al.  An X-ray photoelectron spectroscopy study of the HF etching of native oxides on Ge(111) and Ge(100) surfaces , 1998 .