Stabilization of Discrete Time-Crystaline Response on a Superconducting Quantum Computer by increasing the Interaction Range

This work presents a novel method for reproducing the dynamics of systems with couplings beyond nearest neighbors using a superconducting quantum processor. Quantum simulation of complex quantum many-body systems is a promising short-term goal of noisy intermediate-scale quantum (NISQ) devices. However, the limited connectivity of native qubits hinders the implementation of quantum algorithms that require long-range interactions. We show that utilizing the universality of quantum processor native gates allows the implementation of couplings among physically disconnected qubits. To demonstrate the effectiveness of our method, we implement a quantum simulation, on IBM quantum superconducting processors, of a Floquet-driven quantum spin chain featuring interactions beyond nearest neighbors. Specifically, we benchmark the prethermal stabilization of discrete Floquet time crystalline response as the interaction range increases, a phenomenon which was never experimentally observed before. Our method enables the study of systems with tunable interaction ranges, opening up new opportunities to explore the physics of long-range interacting quantum systems.

[1]  Jun Li,et al.  Noisy intermediate-scale quantum computers , 2023, Frontiers of Physics.

[2]  William M. Kirby,et al.  Benchmarking noisy intermediate scale quantum error mitigation strategies for ground state preparation of the HCl molecule , 2023, Physical Review Research.

[3]  S. Ruffo,et al.  Logarithmic, fractal and volume-law entanglement in a Kitaev chain with long-range hopping and pairing , 2023, Journal of High Energy Physics.

[4]  T. Murphy,et al.  Evidence of Kardar-Parisi-Zhang scaling on a digital quantum simulator , 2022, npj Quantum Information.

[5]  S. Ruffo,et al.  Quantum heat engine with long-range advantages , 2022, New Journal of Physics.

[6]  L. Quiroga,et al.  Experimental validation of the Kibble-Zurek mechanism on a digital quantum computer , 2022, Frontiers in Quantum Science and Technology.

[7]  D. Deng,et al.  Digital quantum simulation of Floquet symmetry-protected topological phases , 2022, Nature.

[8]  Michael J. Hoffmann,et al.  Noise-resilient edge modes on a chain of superconducting qubits , 2022, Science.

[9]  Andrea Solfanelli,et al.  High-order time crystal phases and their fractal nature , 2022, 2203.16562.

[10]  S. Gherardini,et al.  Third Law of Thermodynamics and the Scaling of Quantum Computers. , 2022, Physical review letters.

[11]  M. Campisi,et al.  Quantum thermodynamic methods to purify a qubit on a quantum processing unit , 2022, AVS Quantum Science.

[12]  B. Lev,et al.  Dipolar physics: a review of experiments with magnetic quantum gases , 2022, Reports on progress in physics. Physical Society.

[13]  Shenglong Xu Long-Range Coupling Affects Entanglement Dynamics , 2022, Physics.

[14]  N. Defenu,et al.  Entanglement propagation and dynamics in non-additive quantum systems , 2021, 2112.11488.

[15]  D. Rossini,et al.  Discrete Time-Crystalline Response Stabilized by Domain-Wall Confinement , 2021, Physical Review X.

[16]  V. Vitale,et al.  Experimental violations of Leggett-Garg inequalities on a quantum computer , 2021, Physical Review A.

[17]  S. Ruffo,et al.  Long-range interacting quantum systems , 2021, Reviews of Modern Physics.

[18]  Hao Li,et al.  Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. , 2021, Physical review letters.

[19]  M. Campisi,et al.  Experimental Verification of Fluctuation Relations with a Quantum Computer , 2021, PRX Quantum.

[20]  Julian F. Wienand,et al.  Programmable interactions and emergent geometry in an array of atom clouds , 2021, Nature.

[21]  P. Frey,et al.  Realization of a discrete time crystal on 57 qubits of a quantum computer , 2021, Science advances.

[22]  K. Itoh,et al.  Materials challenges and opportunities for quantum computing hardware , 2021, Science.

[23]  N. Defenu,et al.  Metastability and discrete spectrum of long-range systems , 2020, Proceedings of the National Academy of Sciences.

[24]  D. Barredo,et al.  Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms , 2020, Nature.

[25]  R. Moessner,et al.  Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal , 2020, PRX Quantum.

[26]  W. Zeng,et al.  Digital zero noise extrapolation for quantum error mitigation , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[27]  Minh C. Tran,et al.  Hierarchy of Linear Light Cones with Long-Range Interactions , 2020, Physical Review X.

[28]  C. Monroe,et al.  Programmable quantum simulations of spin systems with trapped ions , 2019, Reviews of Modern Physics.

[29]  Tomotaka Kuwahara,et al.  Strictly Linear Light Cones in Long-Range Interacting Systems of Arbitrary Dimensions , 2019, 1910.14477.

[30]  J. Knolle,et al.  Higher-order and fractional discrete time crystals in clean long-range interacting systems , 2019, Nature Communications.

[31]  M. Saffman,et al.  Rydberg-Mediated Entanglement in a Two-Dimensional Neutral Atom Qubit Array. , 2019, Physical review letters.

[32]  Andrew Lucas,et al.  Finite Speed of Quantum Scrambling with Long Range Interactions. , 2019, Physical review letters.

[33]  L. Dell'Anna,et al.  Universal dynamical scaling of long-range topological superconductors , 2019, Physical Review B.

[34]  C. Monroe,et al.  Discrete Time Crystals , 2019, Annual Review of Condensed Matter Physics.

[35]  B. Nachman,et al.  Quantum Algorithm for High Energy Physics Simulations. , 2019, Physical review letters.

[36]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[37]  Jad C. Halimeh,et al.  Dynamical criticality and domain-wall coupling in long-range Hamiltonians , 2019, Physical Review B.

[38]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[39]  M. Dalmonte,et al.  Floquet time crystals in clock models , 2018, Physical Review B.

[40]  Jad C. Halimeh,et al.  Quasiparticle origin of dynamical quantum phase transitions , 2018, 1810.07187.

[41]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[42]  M. Kastner,et al.  Dynamical Critical Scaling of Long-Range Interacting Quantum Magnets. , 2018, Physical review letters.

[43]  A. Gambassi,et al.  Prethermal quantum many-body Kapitza phases of periodically driven spin systems , 2018, Physical Review B.

[44]  R. Blum,et al.  Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System. , 2018, Physical review letters.

[45]  J. G. Esteve,et al.  Entanglement entropy in the long-range Kitaev chain , 2018, Physical Review A.

[46]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[47]  M. Dalmonte,et al.  Floquet time crystal in the Lipkin-Meshkov-Glick model , 2017, 1704.01591.

[48]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[49]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[50]  Eric R. Anschuetz,et al.  Atom-by-atom assembly of defect-free one-dimensional cold atom arrays , 2016, Science.

[51]  Hengyun Zhou,et al.  Observation of discrete time-crystalline order in a disordered dipolar many-body system , 2016, Nature.

[52]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[53]  P. W. Hess,et al.  Observation of a discrete time crystal , 2016, Nature.

[54]  Immanuel Bloch,et al.  Periodically driving a many-body localized quantum system , 2016, Nature Physics.

[55]  Bela Bauer,et al.  Floquet Time Crystals. , 2016, Physical review letters.

[56]  Dries Sels,et al.  Information propagation and equilibration in long-range Kitaev chains , 2015, 1511.05459.

[57]  Roderich Moessner,et al.  Phase Structure of Driven Quantum Systems. , 2015, Physical review letters.

[58]  K. Sacha Modeling spontaneous breaking of time-translation symmetry , 2014, 1410.3638.

[59]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[60]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[61]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[62]  Frank Wilczek,et al.  Quantum time crystals. , 2012, Physical review letters.

[63]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[64]  M. Blok,et al.  Controlling the quantum dynamics of a mesoscopic spin bath in diamond , 2011, Scientific Reports.

[65]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[66]  Lev S. Bishop,et al.  CIRCUIT QUANTUM ELECTRODYNAMICS , 2010, Mesoscopic Physics meets Quantum Engineering.

[67]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[68]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[69]  P Cappellaro,et al.  Coherence and control of quantum registers based on electronic spin in a nuclear spin bath. , 2009, Physical review letters.

[70]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[71]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[72]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[73]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[74]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.