How Many Machines Can We Use in Parallel Computing for Kernel Ridge Regression
暂无分享,去创建一个
[1] S. Geer,et al. High-dimensional additive modeling , 2008, 0806.4115.
[2] Martin J. Wainwright,et al. The Local Geometry of Testing in Ellipses: Tight Control via Localized Kolmogorov Widths , 2017, IEEE Transactions on Information Theory.
[3] Christopher K. I. Williams,et al. Understanding Gaussian Process Regression Using the Equivalent Kernel , 2004, Deterministic and Statistical Methods in Machine Learning.
[4] Ding-Xuan Zhou,et al. The covering number in learning theory , 2002, J. Complex..
[5] Ming Yuan,et al. Minimax Optimal Rates of Estimation in High Dimensional Additive Models: Universal Phase Transition , 2015, ArXiv.
[6] Jianqing Fan,et al. Nonparametric inference with generalized likelihood ratio tests , 2007 .
[7] Martin J. Wainwright,et al. Divide and Conquer Kernel Ridge Regression , 2013, COLT.
[8] Han Liu,et al. Nonparametric Heterogeneity Testing For Massive Data , 2016, 1601.06212.
[9] M. Kosorok. Introduction to Empirical Processes and Semiparametric Inference , 2008 .
[10] Tong Zhang,et al. Learning Bounds for Kernel Regression Using Effective Data Dimensionality , 2005, Neural Computation.
[11] Guang Cheng,et al. Optimal Tuning for Divide-and-conquer Kernel Ridge Regression with Massive Data , 2018, ICML.
[12] J. Duchon. Spline minimizing rotation-invariant seminorms in Sobolev spaces , 1977 .
[13] B. Silverman,et al. Maximum Penalized Likelihood Estimation , 2006 .
[14] Shahar Mendelson,et al. Geometric Parameters of Kernel Machines , 2002, COLT.
[15] Jean Duchon,et al. Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.
[16] Martin J. Wainwright,et al. Randomized sketches for kernels: Fast and optimal non-parametric regression , 2015, ArXiv.
[17] Aki Vehtari,et al. BAYESIAN AGGREGATION OF AVERAGE DATA By , 2017 .
[18] David B. Dunson,et al. Scalable Bayes via Barycenter in Wasserstein Space , 2015, J. Mach. Learn. Res..
[19] Han Liu,et al. A PARTIALLY LINEAR FRAMEWORK FOR MASSIVE HETEROGENEOUS DATA. , 2014, Annals of statistics.
[20] Guang Cheng,et al. Computational Limits of Divide-and-Conquer Method , 2015 .
[21] Peter F. de Jong,et al. A central limit theorem for generalized quadratic forms , 1987 .
[22] Jianqing Fan,et al. Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .
[23] Nate Strawn,et al. Distributed Statistical Estimation and Rates of Convergence in Normal Approximation , 2017, Electronic Journal of Statistics.
[24] Guang Cheng,et al. Computational Limits of A Distributed Algorithm for Smoothing Spline , 2015, J. Mach. Learn. Res..
[25] C. J. Stone,et al. Additive Regression and Other Nonparametric Models , 1985 .
[26] G. Wahba,et al. Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .
[27] P. Bartlett,et al. Local Rademacher complexities , 2005, math/0508275.
[28] Guang Cheng,et al. A Bayesian Splitotic Theory For Nonparametric Models , 2015 .
[29] Yun Yang,et al. Non-asymptotic theory for nonparametric testing , 2017, 1702.01330.
[30] Guang Cheng,et al. Local and global asymptotic inference in smoothing spline models , 2012, 1212.6788.
[31] Martin J. Wainwright,et al. Minimax-Optimal Rates For Sparse Additive Models Over Kernel Classes Via Convex Programming , 2010, J. Mach. Learn. Res..
[32] Harry van Zanten,et al. An asymptotic analysis of distributed nonparametric methods , 2017, J. Mach. Learn. Res..
[33] Chong Gu. Smoothing Spline Anova Models , 2002 .
[34] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .