Helical frontier orbitals of conjugated linear molecules

Compounds containing allenes, cumulenes and oligoynes (polyalkynes) have attracted attention for both their conformation and reactivity. Whilst the textbook molecular orbital description explains the general electronic and molecular structure of the cumulenes, there are anomalies in both the crystal structures and cycloaddition products involving oligoynes and allenes; the understanding of these molecules is incomplete. Through a computational study we elucidate that the frontier orbitals of the allene and oligoyne families are extended helices. These orbitals are the linear analogue to the Mobius aromatic systems, which also display non-linear π interactions. The axial chirality found in allenes and oligoynes is intimately related to the topology of the frontier orbitals, and has implications for predictions of cycloaddition pathways, structure stability and spectroscopy.

[1]  C. Roussel,et al.  Axial-to-central chirality transfer in cyclization processes. , 2013, Chemical Society reviews.

[2]  S. Kobatake,et al.  Photoinduced twisting of a photochromic diarylethene crystal. , 2013, Angewandte Chemie.

[3]  S. Blanksby,et al.  Direct detection of a persistent carbonyloxyl radical in the gas phase. , 2013, Angewandte Chemie.

[4]  M. Tamm,et al.  Synthesis of unsymmetrical 1,3-diynes via alkyne cross-metathesis. , 2013, Chemical communications.

[5]  K. Schanze,et al.  Intramolecular triplet energy transfer in anthracene-based platinum acetylide oligomers. , 2013, The journal of physical chemistry. B.

[6]  Shin-ichiro Kato,et al.  Hexadecadehydrodibenzo[20]-, tetracosadehydrotribenzo[30]-, and dotriacontadehydrotetrabenzo[40]annulenes: syntheses, characterizations, electronic properties, and self-associations. , 2013, The Journal of organic chemistry.

[7]  A. D. Allen,et al.  Ketenes and other cumulenes as reactive intermediates. , 2013, Chemical reviews.

[8]  R. Tykwinski,et al.  Synthesis and structure of tetraarylcumulenes: characterization of bond-length alternation versus molecule length. , 2013, Angewandte Chemie.

[9]  F. Inagaki,et al.  Syntheses of 6-8-5 tricyclic ring systems by carbonylative [2+2+1] cycloaddition of bis(allene)s , 2013 .

[10]  D. Uraguchi,et al.  Highly stereoselective Michael addition of azlactones to electron-deficient triple bonds under P-spiro chiral iminophosphorane catalysis: importance of protonation pathway , 2013 .

[11]  Guanghua Li,et al.  Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties , 2013 .

[12]  A. Dreuw,et al.  Twisted tethered tolanes: unanticipated long-lived phosphorescence at 77 K. , 2013, Journal of the American Chemical Society.

[13]  K. Yoshizawa,et al.  Thiophene-fused bisdehydro[12]annulene that undergoes transannular alkyne cycloaddition by either light or heat. , 2013, Journal of the American Chemical Society.

[14]  Marc Gingras,et al.  One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. , 2013, Chemical Society reviews.

[15]  Marc Gingras,et al.  One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes. , 2013, Chemical Society reviews.

[16]  Marc Gingras,et al.  One hundred years of helicene chemistry. Part 2: stereoselective syntheses and chiral separations of carbohelicenes. , 2013, Chemical Society reviews.

[17]  Matteo Barborini,et al.  Reaction pathways by quantum Monte Carlo: insight on the torsion barrier of 1,3-butadiene, and the conrotatory ring opening of cyclobutene. , 2012, The Journal of chemical physics.

[18]  P. Persson,et al.  Quantum Chemical Calculations of Side-Group Stacking and Electronic Properties in Thiophene-Quinoxaline Polymers , 2012 .

[19]  Matthew R Crittall,et al.  Point-to-helical chirality transfer for a scalable and resolution-free synthesis of a helicenoidal DMAP organocatalyst. , 2012, Chemical communications.

[20]  Zhong-Yi Liu,et al.  A (3, 4, 14)-connected framework with various distorted triangular magnetic lattices exhibiting field-induced metamagnetism, spin competition and spin reorientation. , 2012, Dalton transactions.

[21]  Nozomi Saito,et al.  Ruthenium-catalyzed intramolecular [2+2+2] cyclization of allene-yne-enes: construction of fused-tricyclic skeletons. , 2012, Chemistry, an Asian journal.

[22]  A. Miniewicz,et al.  [NH2(C2H4)2O]MX5: a new family of morpholinium nonlinear optical materials among halogenoantimonate(III) and halogenobismuthate(III) compounds. Structural characterization, dielectric and piezoelectric properties. , 2012, Dalton transactions.

[23]  F. Inagaki,et al.  Regioselective intramolecular [3+2] annulation of allene-nitrones. , 2012, Chemical & pharmaceutical bulletin.

[24]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[25]  B. Kahr,et al.  Planar hydrocarbons more optically active than their isomeric helicenes. , 2011, Journal of the American Chemical Society.

[26]  Henry S Rzepa,et al.  Design, synthesis, and evaluation of a helicenoidal DMAP Lewis base catalyst. , 2011, Organic letters.

[27]  Yixin Lu,et al.  Enantioselective [3 + 2] cycloaddition of allenes to acrylates catalyzed by dipeptide-derived phosphines: facile creation of functionalized cyclopentenes containing quaternary stereogenic centers. , 2011, Journal of the American Chemical Society.

[28]  M. Siebert,et al.  Differentiating mechanistic possibilities for the thermal, intramolecular [2 + 2] cycloaddition of allene-ynes. , 2010, Journal of the American Chemical Society.

[29]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[30]  B. Alcaide,et al.  Exploiting [2+2] cycloaddition chemistry: achievements with allenes. , 2010, Chemical Society reviews.

[31]  Omar K Farha,et al.  Control over catenation in metal-organic frameworks via rational design of the organic building block. , 2010, Journal of the American Chemical Society.

[32]  A. Osuka,et al.  Möbius aromaticity and antiaromaticity in expanded porphyrins. , 2009, Nature chemistry.

[33]  F. Toste,et al.  Ligand-controlled access to [4 + 2] and [4 + 3] cycloadditions in gold-catalyzed reactions of allene-dienes. , 2009, Journal of the American Chemical Society.

[34]  Omar M. Yaghi,et al.  Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 , 2008 .

[35]  Gang Xu,et al.  A novel metal-organic network with high thermal stability: nonlinear optical and photoluminescent properties. , 2008, Inorganic chemistry.

[36]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[37]  B. Albinsson,et al.  Photophysics of a butadiyne-linked porphyrin dimer: Influence of conformational flexibility in the ground and first singlet excited state , 2007 .

[38]  Chien‐Hong Cheng,et al.  Cobalt-catalyzed diastereoselective reductive [3 + 2] cycloaddition of allenes and enones. , 2007, Journal of the American Chemical Society.

[39]  R. McMahon,et al.  Reactive Carbon-Chain Molecules: Synthesis of 1-Diazo-2,4-pentadiyne and Spectroscopic Characterization of Triplet Pentadiynylidene (H−C⋮C−C̈−C⋮C−H) , 2006 .

[40]  G. C. Fu,et al.  Synthesis of functionalized cyclopentenes through catalytic asymmetric [3+2] cycloadditions of allenes with enones. , 2006, Angewandte Chemie.

[41]  David Zhigang Wang Conservation of Helical Asymmetry in Chiral Interactions , 2005 .

[42]  Yasutomo Nagano,et al.  Symmetry Switching of the Fluorescent Excited State in α,ω-Diphenylpolyynes , 2003 .

[43]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[44]  S. Inagaki,et al.  Orbital phase control of conformations of alkyne derivatives , 2001 .

[45]  Vincenzo Barone,et al.  TOWARD CHEMICAL ACCURACY IN THE COMPUTATION OF NMR SHIELDINGS : THE PBE0 MODEL , 1998 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  B. Ranu,et al.  Use of 1-menthyl ester as chiral auxiliary in the synthesis of useful chiral synthons , 1996 .

[48]  J. Charlton,et al.  Synthesis of acetylenedicarboxylic acid esters and asymmetric Diels–Alder reactions of the bis(methyl (S)-lactyl) ester , 1995 .

[49]  Dan B. Millward,et al.  Asymmetric Induction in Intramolecular [2 + 2]-Photocycloadditions of 1,3-Disubstituted Allenes with Enones and Enoates , 1994 .

[50]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[51]  David E. Alonso,et al.  Stereochemical features of the (2 + 2) cycloaddition reactions of chiral allenes. IV: The cycloaddition of enantioenriched 1,3-dimethylallene with methyl propiolate , 1992 .

[52]  H. S. Kim,et al.  Vibrational Spectra of Butatriene (C4H4) and Pentatetraene (C5H4): Is Pentatetraene Bent? , 1991 .

[53]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[54]  V. Kauss,et al.  Electron impact mass spectra of 2-hydrazono-1,3-thiazolidin-4-one derivatives , 1990 .

[55]  V. Kauss,et al.  Structure of products of addition of thiosemicarbazides and thiosemicarbazones to acetylenedicarboxylic acid and its dimethyl ester , 1990, Chemistry of Heterocyclic Compounds.

[56]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[57]  R. Bonjouklian,et al.  Versatile allene and carbon dioxide equivalents for the Diels-Alder reaction , 1977 .

[58]  J. Ripoll Synthesis of pentatetraene by thermal decomposition of a vinylallene , 1976 .

[59]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[60]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[61]  S. Rigby,et al.  The synthesis, structures and reactions of zinc and cobalt metal–organic frameworks incorporating an alkyne-based dicarboxylate linker , 2012 .

[62]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[63]  Roald Hoffmann,et al.  Conservation of orbital symmetry , 1968 .

[64]  Roald Hoffmann,et al.  Stereochemistry of Electrocyclic Reactions (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .