Stability analysis for linear systems with input backlash through sufficient LMI conditions

This paper addresses the problem of stability analysis for a given class of nonlinear systems resulting from the connection of a linear system with an isolated backlash operator. Constructive conditions based on LMIs to ensure closed-loop stability are proposed by using some suitable Lyapunov functionals with quadratic terms and Lure type terms, and generalized sector conditions. Additionally, the boundary of the associated set of all the admissible equilibrium points is precisely defined.

[1]  José Rodellar,et al.  Adaptive control of a hysteretic structural system , 2005, Autom..

[2]  E. Ryan,et al.  Integral control of infinite-dimensional systems in the presence of hysteresis: an input-output approach , 2007 .

[3]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[4]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[5]  Gang Tao,et al.  Design and analysis of a hybrid control scheme for sandwich nonsmooth nonlinear systems , 2002, IEEE Trans. Autom. Control..

[6]  Jonathan P. How,et al.  A KYP lemma and invariance principle for systems with multiple hysteresis non-linearities , 2001 .

[7]  Chun-Yi Su,et al.  Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations , 2006, Autom..

[8]  E. P. Ryan,et al.  The Circle Criterion and Input-to-State Stability for Infinite-Dimensional Systems , 2008 .

[9]  Sophie Tarbouriech,et al.  Stability analysis for systems with nested backlash and saturation operators , 2007, 2007 46th IEEE Conference on Decision and Control.

[10]  Gang Tao,et al.  Adaptive control of systems with unknown non‐smooth non‐linearities , 1997 .

[11]  Georges Bastin,et al.  A Strict Lyapunov Function for Boundary Control of Hyperbolic Systems of Conservation Laws , 2007, IEEE Transactions on Automatic Control.

[12]  Wassim M. Haddad,et al.  Linear controller analysis for systems with input hysteresis nonlinearities , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[13]  J. Aplevich,et al.  Lecture Notes in Control and Information Sciences , 1979 .

[14]  Hartmut Logemann,et al.  Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of solutions , 2003 .

[15]  J. Coron Control and Nonlinearity , 2007 .

[16]  Chen Wei,et al.  Robust adaptive control of a class of nonlinear systems , 2003, International Symposium on Instrumentation and Control Technology.

[17]  Wassim M. Haddad,et al.  Absolute stability criteria for multiple slope-restricted monotonic nonlinearities , 1995, IEEE Trans. Autom. Control..

[18]  Augusto Visintin,et al.  Evolution problems with hysteresis in the source term , 1986 .

[19]  Jing Zhou,et al.  Decentralized adaptive stabilization in the presence of unknown backlash-like hysteresis , 2007, Autom..

[20]  Max Donath,et al.  American Control Conference , 1993 .

[21]  Thomas Kailath,et al.  The asymptotic stability of nonlinear (Lur'e) systems with multiple slope restrictions , 1998, IEEE Trans. Autom. Control..

[22]  Mattias Nordin,et al.  Controlling mechanical systems with backlash - a survey , 2002, Autom..

[23]  Xiaoli Ma,et al.  Optimal and nonlinear decoupling control of systems with sandwiched backlash , 2001, Autom..

[24]  Maria Letizia Corradini,et al.  Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator , 2002, IEEE Trans. Control. Syst. Technol..

[25]  Wassim M. Haddad,et al.  Linear controller analysis and design for systems with input hystereses nonlinearities , 2003, J. Frankl. Inst..

[26]  Alfonso Baños,et al.  Input-Ouput stability of systems with backlash , 2004 .

[27]  J. Craggs Applied Mathematical Sciences , 1973 .

[28]  Bayu Jayawardhana,et al.  PID control of second-order systems with hysteresis , 2007, 2007 46th IEEE Conference on Decision and Control.

[29]  H. Logemann,et al.  The Circle Criterion and Input-to-State Stability , 2011, IEEE Control Systems.

[30]  Alfonso Baños,et al.  Input-output stability of systems with backlash , 2006, Autom..