Water Resources Systems: Hydrological Risk, Management and Development

[1]  Lucien Duckstein,et al.  Linkage between the occurrence of daily atmospheric circulation patterns and floods: an Arizona case study , 1993 .

[2]  Europe.,et al.  In Europe … , 1994, Current History.

[3]  Ulrich Maniak Hydrologie und Wasserwirtschaft , 1988 .

[4]  D. Moorhead,et al.  Increasing risk of great floods in a changing climate , 2002, Nature.

[5]  András Bárdossy,et al.  Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989 , 1990 .

[6]  S. Dyck,et al.  Grundlagen der Hydrologie , 1983 .

[7]  Frederick C. Cuny,et al.  Living with floods: Alternatives for riverine flood mitigation , 1991 .

[8]  K. M. O'Connor,et al.  Analysis of the response surface of the objective function by the optimum parameter curve: how good can the optimum parameter values be? , 2000 .

[9]  M. Woo,et al.  Prediction of annual floods generated by mixed processes , 1982 .

[10]  C. Perrin,et al.  Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments , 2001 .

[11]  H. Houghton-Carr Assessment criteria for simple conceptual daily rainfall-runoff models , 1999 .

[12]  H. Lamb Climatic history and the future , 1985 .

[13]  H. Lamb Climate: present, past and future , 1977 .

[14]  O. White The Solar Output and Its Variation , 1977 .

[15]  Harry F. Lins,et al.  Streamflow trends in the United States , 1999 .

[16]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[17]  Matthew Sturm,et al.  Mapping snow distribution in the Alaskan Arctic using aerial photography and topographic relationships , 1998 .

[18]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[19]  V. Singh,et al.  The HBV model. , 1995 .

[20]  A. Black,et al.  Flood-induced embankment failures on the River Tay: implications of climatically induced hydrological change in Scotland , 1999 .

[21]  T. Wigley,et al.  Statistical downscaling of general circulation model output: A comparison of methods , 1998 .

[22]  R. Schnur Climate science: The investment forecast , 2002, Nature.

[23]  D. Helsel,et al.  Statistical methods in water resources , 2020, Techniques and Methods.

[24]  N. Arnell The effect of climate change on hydrological regimes in Europe: a continental perspective , 1999 .

[25]  H. Engel The flood events of 1993/1994 and 1995 in the Rhine River basin , 1997 .

[26]  Günter Blöschl,et al.  Spatial Patterns of Catchment Hydrology: Observations and Modelling , 2000 .

[27]  Anthony J. Jakeman,et al.  Performance of conceptual rainfall‐runoff models in low‐yielding ephemeral catchments , 1997 .

[28]  T. N. Palmer,et al.  Quantifying the risk of extreme seasonal precipitation events in a changing climate , 2002, Nature.

[29]  A. Porporato,et al.  Influence of weak trends on exceedance probability , 1998 .

[30]  Peter R. Waylen,et al.  El Niño and annual floods on the north Peruvian littoral , 1986 .

[31]  Z. Kundzewicz,et al.  The Great Flood of 1997 in Poland , 1999 .

[32]  L. Vasiliades,et al.  Flood producing mechanisms identification in southern British Columbia, Canada , 2000 .

[33]  Günter Blöschl,et al.  Scaling in hydrology , 2001 .