Dislocation climb strengthening in systems with immobile obstacles: Three-dimensional level-set simulation study

We employ a parallel, three-dimensional level-set code to simulate the dynamics of isolated dislocation lines and loops in an obstacle-rich environment. This system serves as a convenient prototype of those in which extended, one-dimensional objects interact with obstacles and the out-of-plane motion of these objects is key to understanding their pinning-depinning behavior. In contrast to earlier models of dislocation motion, we incorporate long-ranged interactions among dislocation segments and obstacles to study the effect of climb on dislocation dynamics in the presence of misfitting penetrable obstacles/solutes, as embodied in an effective climb mobility. Our main observations are as follows. First, increasing climb mobility leads to more effective pinning by the obstacles, implying increased strengthening. Second, decreasing the range of interactions significantly reduces the effect of climb. The dependence of the critical stress on obstacle concentration and misfit strength is also explored and compared with existing models. In particular, our results are shown to be in reasonable agreement with the Friedel-Suzuki theory. Finally, the limitations inherent in the simplified model employed here, including the neglect of some lattice effects and the use of a coarse-grained climb mobility, are discussed.

[1]  E. Brandt,et al.  Flux-line pinning by point defects in anisotropic biaxial type-II superconductors , 2009 .

[2]  L. Proville,et al.  Depinning transition for a screw dislocation in a model solid solution , 2008, 0811.0239.

[3]  Richard Alan Lesar,et al.  Impact of obstacles on dislocation patterning and stress correlations , 2008 .

[4]  Marc Fivel,et al.  Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics , 2008 .

[5]  Klaus Friedrich,et al.  Epoxy nanocomposites ¿ fracture and toughening mechanisms , 2006 .

[6]  D. Rodney,et al.  Finite-size effects in dislocation glide through random arrays of obstacles: Line tension simulations , 2006 .

[7]  Yang Xiang,et al.  Dislocation climb effects on particle bypass mechanisms , 2006 .

[8]  M. Hilke,et al.  Transverse vortex dynamics in superconductors , 2005, cond-mat/0510616.

[9]  van der Erik Giessen,et al.  Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics , 2004 .

[10]  Yang Xiang,et al.  Level set simulations of dislocation-particle bypass mechanisms , 2004 .

[11]  Yang Xiang,et al.  A level set method for dislocation dynamics , 2003 .

[12]  L. Zhao,et al.  The influence of aging on the microstructure and creep behaviour of a γ-Ti–48%Al–2%W intermetallic , 2002 .

[13]  T. Schrefl,et al.  Micromagnetic three-dimensional simulation of the pinning field in high temperature Sm(Co,Fe,Cu,Zr)z magnets , 2002 .

[14]  Alessandro Vespignani,et al.  Dislocation jamming and andrade creep. , 2002, Physical review letters.

[15]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[16]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[17]  S. Ramasesha,et al.  Synthesis and properties of MoSi2 based engineering ceramics , 2001 .

[18]  S. Zapperi,et al.  Depinning of a dislocation: the influence of long-range interactions , 2000, cond-mat/0011083.

[19]  R. LeSar,et al.  Dislocation motion in the presence of diffusing solutes: a computer simulation study , 2000 .

[20]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[21]  K. Hono,et al.  Evolution of Ω phase in an Al-Cu-Mg Ag alloy a three-dimensional atom probe study , 1998 .

[22]  Hussein M. Zbib,et al.  Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals , 1998 .

[23]  David J. Green,et al.  An Introduction to the Mechanical Properties of Ceramics , 1998 .

[24]  Hussein M. Zbib,et al.  On plastic deformation and the dynamics of 3D dislocations , 1998 .

[25]  C. Chappert,et al.  DOMAIN WALL CREEP IN AN ISING ULTRATHIN MAGNETIC FILM , 1998 .

[26]  D. Dimiduk,et al.  Advanced intermetallic alloys—beyond gamma titanium aluminides , 1997 .

[27]  Simon P. Ringer,et al.  Origins of hardening in aged AlGuMg(Ag) alloys , 1997 .

[28]  Murray S. Daw,et al.  PINNING-DEPINNING TRANSITION IN DISLOCATION DYNAMICS , 1997 .

[29]  F. Roters,et al.  Calculation of stress—strain curves by using 2 dimensional dislocation dynamics , 1996 .

[30]  Daniel S. Fisher,et al.  Quasistatic Crack Propagation in Heterogeneous Media , 1996, cond-mat/9611196.

[31]  Kardar,et al.  Anisotropic scaling in threshold critical dynamics of driven directed lines. , 1995, Physical review. B, Condensed matter.

[32]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[33]  Middleton,et al.  Elastic string in a random potential. , 1992, Physical review letters.

[34]  Ladislas P. Kubin,et al.  Dislocation Microstructures and Plastic Flow: A 3D Simulation , 1992 .

[35]  N. Ghoniem,et al.  Dislocation dynamics. I. A proposed methodology for deformation micromechanics. , 1990, Physical review. B, Condensed matter.

[36]  G. Grüner,et al.  The dynamics of charge-density waves , 1988 .

[37]  P. Gennes Wetting: statics and dynamics , 1985 .

[38]  J. Hirth,et al.  Theory of Dislocations (2nd ed.) , 1983 .

[39]  B. Burton,et al.  The configuration and climb rate of dislocation links and the contribution to anelastic creep , 1977 .

[40]  Frank Reginald Nunes Nabarro,et al.  The theory of solution hardening , 1977 .

[41]  R. Lagneborg Bypassing of dislocations past particles by a climb mechanism , 1973 .

[42]  M. Z. Butt,et al.  Solid-solution hardening , 1973, Journal of Materials Science.

[43]  R. Labusch,et al.  Statistische theorien der mischkristallhärtung , 1972 .

[44]  M. Makin,et al.  DISLOCATION MOVEMENT THROUGH RANDOM ARRAYS OF OBSTACLES , 1966 .

[45]  A. Brailsford Effective Line Tension of a Dislocation , 1965 .

[46]  M. Peach,et al.  THE FORCES EXERTED ON DISLOCATIONS AND THE STRESS FIELDS PRODUCED BY THEM , 1950 .

[47]  K. Schwarz,et al.  Simulation of dislocations on the mesoscopic scale. I. Methods and examples , 1999 .

[48]  H. Neuhäuser Problems in solid solution hardening , 1993 .

[49]  Z. Trojanová,et al.  On precipitation hardening in Cd-Zn alloy , 1978 .

[50]  R. Labusch A Statistical Theory of Solid Solution Hardening , 1970 .

[51]  M. Naimark,et al.  Some basic problems of the mathematical theory of elasticity , 1953 .

[52]  N. Mott,et al.  An attempt to estimate the degree of precipitation hardening, with a simple model , 1940 .