Improved TiO2 photocatalytic reduction by the intrinsic electrostatic potential of BN nanotubes.

We describe the synthesis of novel nanocrystalline TiO(2) closely attached to BN nanotubes (BNNTs). The method involves the reaction of Ti(3+) with the oxidized radicals BN-H(+) to form BN-Ti(4+) bonds first, and then in situ hydrolytic conversion of the attached Ti(4+) into TiO(2). The designed reaction was carried out in a strongly acidic ethanol solution to ensure that the TiO(2) forms on the BNNT surface rather than in solution. We also report the improved photocatalytic reduction properties of TiO(2) when functionalized on BNNT surfaces and take advantage of the strong underlying electrostatic potential of the high-purity nanotubes.

[1]  C. Rao,et al.  Functionalization and solubilization of BN nanotubes by interaction with Lewis bases , 2007 .

[2]  T. Savenije,et al.  Effect of the structure of substituents on charge separation in meso-tetraphenylporphyrin/TiO2 bilayers , 2006 .

[3]  Xiaojing Yang,et al.  Urea coordinated titanium trichloride Ti(III)[OC(NH)2]6Cl3: a single molecular precursor yielding highly visible light responsive TiO2 nanocrystallites. , 2006, The journal of physical chemistry. B.

[4]  C. Zhi,et al.  Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. , 2005, Angewandte Chemie.

[5]  Ya‐Ping Sun,et al.  Solubilization of boron nitride nanotubes. , 2005, Chemical communications.

[6]  C. Zhi,et al.  Effective precursor for high yield synthesis of pure BN nanotubes , 2005 .

[7]  Y. Bando,et al.  Fluorination and electrical conductivity of BN nanotubes. , 2005, Journal of the American Chemical Society.

[8]  Monica C. Concha,et al.  Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes , 2005, Journal of molecular modeling.

[9]  Y. Bando,et al.  Multi-walled BN nanotubes synthesized by carbon-free method , 2004 .

[10]  Alex Zettl,et al.  Coating Single-Walled Carbon Nanotubes with Tin Oxide , 2003 .

[11]  S. George,et al.  Atomic layer deposition of boron nitride using sequential exposures of BCl3 and NH3 , 2002 .

[12]  Y. Bando,et al.  A novel precursor for synthesis of pure boron nitride nanotubes. , 2002, Chemical communications.

[13]  Ajay K. Ray,et al.  Removal of toxic metal ions from wastewater by semiconductor photocatalysis , 2001 .

[14]  Tom J. Savenije,et al.  Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer , 1998 .

[15]  X. Doménech,et al.  Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method , 1998 .

[16]  K. Rajeshwar,et al.  Photocatalytic Removal of Nickel from Aqueous Solutions Using Ultraviolet‐Irradiated TiO2 , 1997 .

[17]  A. Bard,et al.  Photoinduced Reaction at TiO2 Particles. Photodeposition from Ni II Solutions with Oxalate , 1996 .

[18]  Alex Zettl,et al.  Non‐carbon nanotubes , 1996 .

[19]  Miyamoto,et al.  Theoretical study of one-dimensional chains of metal atoms in nanotubes. , 1995, Physical review. B, Condensed matter.

[20]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[21]  S. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[22]  Cohen,et al.  Theory of graphitic boron nitride nanotubes. , 1994, Physical review. B, Condensed matter.

[23]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[24]  P. Voort,et al.  Characterization and quantification of the NH3 modification of a BCl3-treated silica gel surface , 1996 .

[25]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[26]  James R. White,et al.  Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysts. The methyl viologen-acetate system , 1983 .