Automatic exudate detection by fusing multiple active contours and regionwise classification

In this paper, we propose a method for the automatic detection of exudates in digital fundus images. Our approach can be divided into three stages: candidate extraction, precise contour segmentation and the labeling of candidates as true or false exudates. For candidate detection, we borrow a grayscale morphology-based method to identify possible regions containing these bright lesions. Then, to extract the precise boundary of the candidates, we introduce a complex active contour-based method. Namely, to increase the accuracy of segmentation, we extract additional possible contours by taking advantage of the diverse behavior of different pre-processing methods. After selecting an appropriate combination of the extracted contours, a region-wise classifier is applied to remove the false exudate candidates. For this task, we consider several region-based features, and extract an appropriate feature subset to train a Naïve-Bayes classifier optimized further by an adaptive boosting technique. Regarding experimental studies, the method was tested on publicly available databases both to measure the accuracy of the segmentation of exudate regions and to recognize their presence at image-level. In a proper quantitative evaluation on publicly available datasets the proposed approach outperformed several state-of-the-art exudate detector algorithms.

[1]  András Hajdu,et al.  Combining algorithms for automatic detection of optic disc and macula in fundus images , 2012, Comput. Vis. Image Underst..

[2]  Bunyarit Uyyanonvara,et al.  Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods , 2008, Comput. Medical Imaging Graph..

[3]  Joni-Kristian Kämäräinen,et al.  The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol , 2007, BMVC.

[4]  Thomas S. Huang,et al.  Image processing , 1971 .

[5]  Enrico Grisan,et al.  Luminosity and contrast normalization in retinal images , 2005, Medical Image Anal..

[6]  Roberto Hornero,et al.  A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. , 2008, Medical engineering & physics.

[8]  Sharib Ali,et al.  Steerable wavelet transform for atlas based retinal lesion segmentation , 2013, Medical Imaging.

[9]  J. Shaw,et al.  Global estimates of the prevalence of diabetes for 2010 and 2030. , 2010, Diabetes research and clinical practice.

[10]  Milan Sonka,et al.  Image processing analysis and machine vision [2nd ed.] , 1999 .

[11]  Sharib Ali,et al.  Statistical atlas based exudate segmentation , 2013, Comput. Medical Imaging Graph..

[12]  Hayde Peregrina-Barreto,et al.  Morphological rational operator for contrast enhancement. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  H. Kälviäinen,et al.  DIARETDB 1 diabetic retinopathy database and evaluation protocol , 2007 .

[14]  Jerry L. Prince,et al.  Gradient vector flow: a new external force for snakes , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Matti Pietikäinen,et al.  Facial Skin Color Modeling , 2005 .

[16]  Asoke K. Nandi,et al.  Detection of exudates in retinal images using a pure splitting technique , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[17]  B. van Ginneken,et al.  Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. , 2007, Investigative ophthalmology & visual science.

[18]  Ross T. Whitaker,et al.  A Level-Set Approach to 3D Reconstruction from Range Data , 1998, International Journal of Computer Vision.

[19]  Bunyarit Uyyanonvara,et al.  Machine learning approach to automatic exudate detection in retinal images from diabetic patients , 2010 .

[20]  Kenneth W. Tobin,et al.  Exudate-based diabetic macular edema detection in fundus images using publicly available datasets , 2012, Medical Image Anal..

[21]  Keith A Goatman,et al.  Colour normalisation of retinal images , 2022 .

[22]  Zsolt Török,et al.  Live Cell Segmentation in Fluorescence Microscopy via Graph Cut , 2010, 2010 20th International Conference on Pattern Recognition.

[23]  Karel J. Zuiderveld,et al.  Contrast Limited Adaptive Histogram Equalization , 1994, Graphics Gems.

[24]  Anurag Mittal,et al.  Automated feature extraction for early detection of diabetic retinopathy in fundus images , 2009, CVPR.

[25]  András Hajdu,et al.  Automatic exudate detection using active contour model and regionwise classification , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[26]  Jacob Scharcanski,et al.  A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images , 2010, Comput. Medical Imaging Graph..

[27]  Dennis Saleh Zs , 2001 .

[28]  M. Cree,et al.  A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms , 1998, Comput. Biol. Medicine.

[29]  Michael H. Goldbaum,et al.  Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels , 2003, IEEE Transactions on Medical Imaging.

[30]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[31]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[32]  Peter F. Sharp,et al.  Evaluation of a System for Automatic Detection of Diabetic Retinopathy From Color Fundus Photographs in a Large Population of Patients With Diabetes , 2008, Diabetes Care.

[33]  Aliaa A. A. Youssif,et al.  Comparative Study of Contrast Enhancement and Illumination Equalization Methods for Retinal Vasculat , 2006 .

[34]  Aliaa A. A. Youssif,et al.  A comparative evaluation of preprocessing methods for automatic detection of retinal anatomy , 2007 .

[35]  Bunyarit Uyyanonvara,et al.  Automatic Exudate Detection from Non-dilated Diabetic Retinopathy Retinal Images Using Fuzzy C-means Clustering , 2009, Sensors.

[36]  Roberto Hornero,et al.  Neural network based detection of hard exudates in retinal images , 2009, Comput. Methods Programs Biomed..

[37]  Milan Sonka,et al.  Image pre-processing , 1993 .

[38]  Pascale Massin,et al.  A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina , 2002, IEEE Transactions on Medical Imaging.