Morphotectonic Analysis of the East Manus Basin, Papua New Guinea

Backarc basin systems are important sites of extension leading to crustal rupture where basin development typically occurs in rifting phases (or stages) with the final successful stages identified by the formation of spreading ridges and new oceanic crust. The East Manus Basin is a young (<1 Ma), active, rapidly rifting backarc basin in a complex tectonic setting at the confluence of the oblique convergence of the Australian and Pacific plates. Here we undertake the first comprehensive spatial-temporal morphotectonic description and interpretation of the East Manus Basin including a link to the timing of, and tectonic controls on, the formation of seafloor massive sulfide mineralization. Key seafloor datasets used in the morphotectonic analysis include multi-resolution multibeam echosounder seafloor data and derivatives. Morphotectonic analysis of these data defines three evolutionary phases for the East Manus Basin. Each phase is distinguished by a variation in seafloor characteristics, volcano morphology and structural features: Phase 1 is a period of incipient extension of existing arc crust with intermediate to silicic volcanism; Phase 2 evolves to crustal rifting with effusive, flat top volcanoes with fissures; and Phase 3 is a nascent organized half-graben system with axial volcanism and seafloor spreading. The morphotectonic analysis, combined with available age constraints, shows that crustal rupture can occur rapidly (within ∼1 Myr) in backarc basins but that the different rift phases can become abandoned and preserved on the seafloor as the locus of extension and magmatism migrates to focus on the ultimate zone(s) of crustal rupture. Consequently, the spatial-temporal occurrence of significant Cu-rich seafloor massive sulfide mineralization can be constrained to the transition from Phase 1 to Phase 2 within the East Manus Basin. Mineralizing hydrothermal systems have utilized interconnected structural zones developed during these phases. This research improves our understanding of the early evolution of modern backarc systems, including the association between basin evolution and spatial-temporal formation of seafloor massive sulfide deposits, and provides key morphotectonic relationships that can be used to help interpret the evolution of paleo/fossilized backarc basins found in fold belts and accreted terrains around the world.

[1]  Geologic Evolution , 2022, Atlas of Yellowstone.

[2]  J. Webster,et al.  Morphotype differentiation in the Great Barrier Reef Halimeda bioherm carbonate factory: Internal architecture and surface geomorphometrics , 2020, The Depositional Record.

[3]  M. Hannington,et al.  The submarine tectono-magmatic framework of Cu-Au endowment in the Tabar-to-Feni island chain, PNG , 2020, Ore Geology Reviews.

[4]  C. D. de Ronde,et al.  Early evolution of a young back-arc basin in the Havre Trough , 2019, Nature Geoscience.

[5]  D. Bohnenstiehl,et al.  Acoustic evidence of a long-lived gas-driven submarine volcanic eruption in the Bismarck Sea , 2019, Geophysical Journal International.

[6]  R. Holm,et al.  Tectonic evolution and copper-gold metallogenesis of the Papua New Guinea and Solomon Islands region , 2019, Ore Geology Reviews.

[7]  W. Bach,et al.  Magma plumbing and hybrid magma formation at an active back-arc basin volcano: North Su, eastern Manus basin , 2018, Journal of Volcanology and Geothermal Research.

[8]  Dawn J. Wright,et al.  Unified Geomorphological Analysis Workflows with Benthic Terrain Modeler , 2018 .

[9]  S. Eggins,et al.  The 1994-2001 eruptive period at Rabaul, Papua New Guinea: Petrological and geochemical evidence for basalt injections into a shallow dacite magma reservoir, and significant SO 2 flux , 2017 .

[10]  V. Lucieer,et al.  Erosional and depositional processes on the submarine flanks of Ontong Java and Nukumanu atolls, western equatorial Pacific Ocean , 2017 .

[11]  G. Schreurs,et al.  How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models , 2017 .

[12]  Sillitoe,et al.  Geologic Overview of the Escondida Porphyry Copper District, Northern Chile , 2017 .

[13]  V. Dekov,et al.  Enargite-luzonite hydrothermal vents in Manus Back-Arc Basin: Submarine analogues of high-sulfidation epithermal mineralization , 2016 .

[14]  D. Sanderson,et al.  Glossary of fault and other fracture networks , 2016 .

[15]  D. Yoerger,et al.  Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano , 2016 .

[16]  R. Berry,et al.  Arc-oblique fault systems: their role in the Cenozoic structural evolution and metallogenesis of the Andes of central Chile , 2016 .

[17]  M. Hannington,et al.  News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources , 2016 .

[18]  F. Martínez,et al.  Geology and kinematics of the Niuafo'ou microplate in the northern Lau Basin , 2016 .

[19]  I. Lindley Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar–Lihir–Tanga–Feni alkalic province, New Ireland Basin, Papua New Guinea , 2016 .

[20]  Simon Richards,et al.  Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: microplate tectonics in a convergent plate boundary setting , 2016 .

[21]  M. Hannington,et al.  Tectonic focusing of voluminous basaltic eruptions in magma-deficient backarc rifts , 2016 .

[22]  F. Chu,et al.  Origin of selective enrichment of Cu and Au in sulfide deposits formed at immature back-arc ridges: Examples from the Lau and Manus basins , 2016 .

[23]  H. Fossen,et al.  Fault linkage and relay structures in extensional settings—A review , 2016 .

[24]  E. Baker,et al.  Where are the undiscovered hydrothermal vents on oceanic spreading ridges , 2015 .

[25]  Martin Jakobsson,et al.  A new digital bathymetric model of the world's oceans , 2015 .

[26]  V. Huvenne,et al.  Objective automated classification technique for marine landscape mapping in submarine canyons , 2015 .

[27]  J. Erzinger,et al.  Origin of Silicic Magmas at Spreading Centres—an Example from the South East Rift, Manus Basin , 2015 .

[28]  Cherisse Du Preez,et al.  A new arc–chord ratio (ACR) rugosity index for quantifying three-dimensional landscape structural complexity , 2015 .

[29]  R. Binns,et al.  The SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea: An Active Submarine High-Sulfidation Copper-Gold System , 2014 .

[30]  D. Butterfield,et al.  Metallogenesis and Mineralization of Intraoceanic Arcs II: The Aeolian, Izu-Bonin, Mariana, and Kermadec Arcs, and the Manus Backarc Basin—Introduction , 2014 .

[31]  B. Barry,et al.  Episodic Subseafloor Hydrothermal Activity Within the Eastern Manus Back-Arc Basin Determined by Uranium-Series Disequilibrium in Barite , 2014 .

[32]  Thomas Monecke,et al.  Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings , 2014 .

[33]  D. Yoerger,et al.  Geologic setting of PACManus hydrothermal area — High resolution mapping and in situ observations , 2014 .

[34]  D. Singer Base and precious metal resources in seafloor massive sulfide deposits , 2014 .

[35]  L. Solari,et al.  Late Oligocene to Middle Miocene rifting and synextensional magmatism in the southwestern Sierra Madre Occidental, Mexico: The beginning of the Gulf of California rift , 2013 .

[36]  R. Holm,et al.  A re-evaluation of arc–continent collision and along-arc variation in the Bismarck Sea region, Papua New Guinea , 2013 .

[37]  R. Glen Refining accretionary orogen models for the Tasmanides of eastern Australia , 2013 .

[38]  E. Ruellan,et al.  Tectonic and Magmatic Evolution of the Bismarck Sea, Papua New Guinea: Review and New Synthesis , 2013 .

[39]  Simon L. Klemperer,et al.  An Overview of the Izu‐Bonin‐Mariana Subduction Factory , 2013 .

[40]  M. Leybourne,et al.  Sources of Chalcophile and Siderophile Elements in Kermadec Arc Lavas , 2012 .

[41]  M. Leybourne,et al.  The Tectonomagmatic Source of Ore Metals and Volatile Elements in the Southern Kermadec Arc , 2012 .

[42]  C. Yesson,et al.  Towards High-Resolution Habitat Suitability Modeling of Vulnerable Marine Ecosystems in the Deep-Sea: Resolving Terrain Attribute Dependencies , 2012 .

[43]  Laura E. Webb,et al.  Tectonics of the New Guinea Region , 2012 .

[44]  M. Hannington,et al.  The abundance of seafloor massive sulfide deposits , 2011 .

[45]  W. Bach Report and preliminary results of RV SONNE Cruise SO 216, Townsville (Australia) - Makassar (Indonesia), June 14 - July 23, 2011. BAMBUS, Back-Arc Manus Basin Underwater Solfataras , 2011 .

[46]  M. Leybourne,et al.  Backarc rifting, constructional volcanism and nascent disorganised spreading in the southern Havre Trough backarc rifts (SW Pacific) , 2010 .

[47]  Sung Hyun Park,et al.  Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea , 2010 .

[48]  R. Sillitoe Porphyry Copper Systems , 2010 .

[49]  K. McClay,et al.  4D analogue modelling of transtensional pull-apart basins , 2009 .

[50]  P. Mann,et al.  Collisional model for rapid fore‐arc block rotations, arc curvature, and episodic back‐arc rifting in subduction settings , 2009 .

[51]  Jeremy P. Richards,et al.  Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere , 2009 .

[52]  J. Hermann,et al.  Submarine back‐arc lava with arc signature: Fonualei Spreading Center, northeast Lau Basin, Tonga , 2008 .

[53]  D. Miller,et al.  Leg 193 Synthesis: Anatomy of an Active Felsic-Hosted Hydrothermal System, Eastern Manus Basin, Papua New Guinea , 2007 .

[54]  Paul Mann,et al.  Tectonics of strike-slip restraining and releasing bends , 2007 .

[55]  Marc Van Meirvenne,et al.  Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf seas , 2006 .

[56]  G. Pinder,et al.  The Geologic Setting , 2006 .

[57]  I. Lindley Extensional and vertical tectonics in the New Guinea islands: implications for island arc evolution , 2006 .

[58]  J. Beavan,et al.  Rapid microplate rotations and backarc rifting at the transition between collision and subduction , 2005 .

[59]  E. Baker,et al.  Evolution of a Submarine Magmatic-Hydrothermal System: Brothers Volcano, Southern Kermadec Arc, New Zealand , 2005 .

[60]  R. Stern,et al.  Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components , 2005 .

[61]  Kaihui Yang,et al.  Magmatic sources of volatiles and metals for volcanogenic massive sulfide deposits on modern and ancient seafloors: Evidence from melt inclusions , 2005 .

[62]  M. Hannington,et al.  Sea-floor tectonics and submarine hydrothermal systems , 2005 .

[63]  James V. Gardner,et al.  Predicting seafloor facies from multibeam bathymetry and backscatter data , 2004 .

[64]  Laura M. Wallace,et al.  GPS and seismological constraints on active tectonics and arc‐continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone , 2004 .

[65]  D. Sanderson,et al.  Fault damage zones , 2004 .

[66]  J. Richards Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation , 2003 .

[67]  I. Wright,et al.  Inhomogeneous substrate analysis using EM300 backscatter imagery , 2003 .

[68]  B. Taylor,et al.  Back-arc basin basalt systematics , 2003 .

[69]  P. Bird An updated digital model of plate boundaries , 2003 .

[70]  B. Taylor,et al.  Controls on back-arc crustal accretion: insights from the Lau, Manus and Mariana basins , 2003, Geological Society, London, Special Publications.

[71]  J. Sinton,et al.  Magma Genesis and Mantle Heterogeneity in the Manus Back-Arc Basin, Papua New Guinea , 2003 .

[72]  Kaihui Yang,et al.  Magmatic Degassing of Volatiles and Ore Metals into a Hydrothermal System on the Modern Sea Floor of the Eastern Manus Back-Arc Basin, Western Pacific , 2002 .

[73]  R. Hall Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations , 2002 .

[74]  Paul Tregoning,et al.  Plate kinematics in the western Pacific derived from geodetic observations , 2002 .

[75]  B. Taylor,et al.  A three‐plate kinematic model for Lau Basin opening , 2001 .

[76]  A. Boyce,et al.  Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization , 2001 .

[77]  A. Crawford,et al.  Parental basaltic melts and fluids in eastern Manus backarc Basin: Implications for hydrothermal mineralisation , 2001 .

[78]  K. Lambeck,et al.  Present-day crustal motion in Papua New Guinea , 2000 .

[79]  J. Auzende,et al.  Extensive magmatic and hydrothermal activity documented in Manus Basin , 2000 .

[80]  David J. Sanderson,et al.  Glossary of normal faults , 2000 .

[81]  Paul Tregoning,et al.  Motion of the South Bismarck Plate, Papua New Guinea , 1999 .

[82]  I. Wright,et al.  Southern Kermadec submarine caldera arc volcanoes (SW Pacific): caldera formation by effusive and pyroclastic eruption , 1999 .

[83]  J. Walshe,et al.  Cross-structures in the Lachlan Orogen: The Lachlan Transverse Zone example , 1999 .

[84]  B. Deffontaines,et al.  Okinawa trough backarc basin: Early tectonic and magmatic evolution , 1998 .

[85]  C. Busby,et al.  Structural and stratigraphic evolution of extensional oceanic arcs , 1998 .

[86]  R. A. Strachan,et al.  Transpression and transtension zones , 1998, Geological Society, London, Special Publications.

[87]  J. Auzende,et al.  Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea , 1997 .

[88]  I. Wright,et al.  The Lau-Havre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading , 1996 .

[89]  O. Dauteuil,et al.  Small‐scale models of oceanic transform zones , 1996 .

[90]  B. Taylor,et al.  Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin , 1996 .

[91]  I. Nairn,et al.  Geology and eruptive history of the Rabaul Caldera area, Papua New Guinea , 1995 .

[92]  Shamita Das,et al.  A seismological study of the eastern New Guinea and the western Solomon Sea regions and its tectonic implications , 1995 .

[93]  K. Crook,et al.  Extensional transform zones and oblique spreading centers , 1994 .

[94]  N. Shackleton,et al.  The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal , 1994 .

[95]  S. Carbotte,et al.  Comparison of seafloor tectonic fabric at intermediate, fast, and super fast spreading ridges: Influence of spreading rate, plate motions, and ridge segmentation on fault patterns , 1994 .

[96]  P. Clift Volcanism and sedimentation in a rifting island-arc terrain: an example from Tonga, SW Pacific , 1994, Geological Society, London, Special Publications.

[97]  L. Parson,et al.  Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity , 1994, Geological Society, London, Special Publications.

[98]  R. Binns,et al.  Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea , 1993 .

[99]  J. M. Hurst,et al.  Transfer zones in extensional basins: their structural style and influence on drainage development and stratigraphy , 1993, Journal of the Geological Society.

[100]  B. Taylor,et al.  Rifting and the Volcanic-Tectonic Evolution of the Izu-Bonin-Mariana Arc , 1992 .

[101]  Ross R. Large,et al.  Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models , 1992 .

[102]  J. Karson,et al.  Block-tilting, transfer faults, and structural control of magmatic and hydrothermal processesin the TAG area, Mid-Atlantic Ridge 26°N , 1990 .

[103]  P. Lonsdale Geology and tectonic history of the Gulf of California , 1989 .

[104]  M. Kimura,et al.  Back Arc Extension in the Okinawa Trough , 1987 .

[105]  A. Gibbs Structural evolution of extensional basin margins , 1984, Journal of the Geological Society.

[106]  R. G. Johnson Brunhes-Matuyama Magnetic Reversal Dated at 790,000 yr B.P. by Marine-Astronomical Correlations , 1982, Quaternary Research.

[107]  B. Taylor Bismarck Sea: Evolution of a back-arc basin , 1979 .

[108]  J. Gill Composition and age of Lau Basin and Ridge volcanic rocks: Implications for evolution of an interarc basin and remnant arc , 1976 .

[109]  J. Connelly Tectonic Development of the Bismarck Sea Based on Gravity and Magnetic Modelling , 1976 .

[110]  J. Cull,et al.  Time-Term Analysis of New Britain - New Ireland Island Arc Structures , 1973 .

[111]  J. Cull,et al.  Structural profiles in the New Britain / New Ireland region , 1973 .

[112]  D. Karig Ridges and Basins of the Tonga‐Kermadec Island Arc System , 1970 .

[113]  Wilson Jt,et al.  Transform Faults, Oceanic Ridges, and Magnetic Anomalies Southwest of Vancouver Island. , 1965 .

[114]  J. Wilson Transform Faults, Oceanic Ridges, and Magnetic Anomalies Southwest of Vancouver Island , 1965, Science.