Local projection stabilization for advection--diffusion--reaction problems: One-level vs. two-level approach

Local projection stabilization (LPS) of finite element methods is a new technique for the numerical solution of transport-dominated problems. The main aim of this paper is a critical discussion and comparison of the one- and two-level approaches to LPS for the linear advection-diffusion-reaction problem. Moreover, the paper contains several other novel contributions to the theory of LPS. In particular, we derive an error estimate showing not only the usual error dependence on the mesh width but also on the polynomial degree of the finite element space. Based on this error estimate, we propose a definition of the stabilization parameter depending on the data of the solved problem. Unlike other papers on LPS methods, we observe that the consistency error may deteriorate the convergence order. Finally, we explain the relation between the LPS method and residual-based stabilization techniques for simplicial finite elements.

[1]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[2]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[3]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[4]  Roland Becker,et al.  Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.

[5]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[6]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[7]  Volker John,et al.  A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[8]  Martin Stynes,et al.  EFFICIENT GENERATION OF ORIENTED MESHES FOR SOLVING CONVECTION-DIFFUSION PROBLEMS , 1997 .

[9]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[10]  Emmanuil H. Georgoulis,et al.  Inverse-type estimates on hp-finite element spaces and applications , 2008, Math. Comput..

[11]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[12]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[13]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[14]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[15]  H. Roos,et al.  A COMPARISON OF FOUR- AND FIVE-POINT DIFFERENCE APPROXIMATIONS FOR STABILIZING THE ONE-DIMENSIONAL STATIONARY CONVECTION-DIFFUSION EQUATION , 2008 .

[16]  R. Codina Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales , 2008 .

[17]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[18]  Johannes Löwe,et al.  Applying Local Projection Stabilization to inf-sup Stable Elements , 2008 .

[19]  Gunar Matthies,et al.  Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. , 2008 .

[20]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[21]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[22]  Volker Gravemeier,et al.  The variational multiscale method for laminar and turbulent flow , 2006 .

[23]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[24]  Sashikumaar Ganesan,et al.  Stabilization by Local Projection for Convection–Diffusion and Incompressible Flow Problems , 2010, J. Sci. Comput..

[25]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[26]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .