Use of THz Photoconductive Sources to Characterize Tunable Graphene RF Plasmonic Antennas

Graphene, owing to its ability to support plasmon polariton waves in the terahertz frequency range, enables the miniaturization of antennas to allow wireless communications among nanosystems. One of the main challenges in the demonstration of graphene antennas is finding suitable terahertz sources to feed the antenna. This paper estimates the performance of a graphene RF plasmonic micro-antenna fed with a photoconductive source. The terahertz source is modeled and, by means of a full-wave EM solver, the radiated power of the device is estimated with respect to material, laser illumination and antenna geometry parameters. The results show that the proposed device radiates terahertz pulses with an average power up to 1$\mu$W, proving the feasibility of feeding miniaturized graphene antennas with photoconductive materials.

[1]  T. C. McGill,et al.  Oscillations up to 712 GHz in InAs/AlSb resonant‐tunneling diodes , 1991 .

[2]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[3]  Jiayin Qin,et al.  Carrier dynamics of terahertz emission from low-temperature-grown gaas. , 2003, Applied optics.

[4]  W. Hu,et al.  Terahertz Science and Technology and Its Applications , 2008 .

[5]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[6]  Yi Huang,et al.  Theoretical Modeling of a Photoconductive Antenna in a Terahertz Pulsed System , 2013, IEEE Transactions on Antennas and Propagation.

[7]  Yi Huang,et al.  Time Varying Conductance in THz Photoconductive Antennas , 2011 .

[8]  Jérôme Tignon,et al.  Frequency tunable terahertz interdigitated photoconductive antennas , 2010 .

[9]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[10]  A. Cabellos-Aparicio,et al.  Graphene-based nano-patch antenna for terahertz radiation , 2012 .

[11]  M. Tani,et al.  Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. , 1997, Applied optics.

[12]  Eduard Alarcón,et al.  Graphene-enabled wireless communication for massive multicore architectures , 2013, IEEE Communications Magazine.

[13]  Albert Cabellos-Aparicio,et al.  Scattering of terahertz radiation on a graphene-based nano-antenna , 2011 .

[14]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[15]  K. Cheung,et al.  Picosecond photoconducting Hertzian dipoles , 1984 .

[16]  E. Brown,et al.  Terahertz graphene optics , 2012, Nano Research.

[17]  Heribert Eisele,et al.  Two-terminal millimeter-wave sources , 1997 .

[18]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[19]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[20]  I. Akyildiz,et al.  Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[21]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[22]  F. J. Garcia-Vidal,et al.  Edge and waveguide terahertz surface plasmon modes in graphene microribbons , 2011, 1107.5787.

[23]  M Unlu,et al.  Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. , 2013, Nature communications.

[24]  Ehsan Afshari,et al.  A Broadband mm-Wave and Terahertz Traveling-Wave Frequency Multiplier on CMOS , 2011, IEEE Journal of Solid-State Circuits.

[25]  Ian F. Akyildiz,et al.  Electromagnetic wireless nanosensor networks , 2010, Nano Commun. Networks.

[26]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[27]  Choon How Gan,et al.  Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies , 2012, 1203.4308.

[28]  J. S. Gomez-Diaz,et al.  Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets , 2012 .

[29]  Ian F. Akyildiz,et al.  Information capacity of pulse-based Wireless Nanosensor Networks , 2011, 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[30]  A. Cabellos-Aparicio,et al.  Comparison of the resonant frequency in graphene and metallic nano-antennas , 2012 .