Electrochemical behaviour of Vanadium(V) on electrochemically synthesized magnetite film electrodes

[1]  M. Kosmulski Surface Charging and Points of Zero Charge , 2020 .

[2]  D. Streich,et al.  Vanadium (V) reduction reaction on modified glassy carbon electrodes – Role of oxygen functionalities and microstructure , 2016 .

[3]  M. Soleimani,et al.  Application of nanoscale iron oxide-hydroxide-impregnated activated carbon (Fe-AC) as an adsorbent for vanadium recovery from aqueous solutions , 2016 .

[4]  M. Soleimani,et al.  Performance comparison of activated carbon and ferric oxide-hydroxide–activated carbon nanocomposite as vanadium(V) ion adsorbents , 2015 .

[5]  R. Kumar,et al.  Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms , 2015, Environmental Monitoring and Assessment.

[6]  Chin-Ching Wu,et al.  Highly Efficient Arsenic Removal Using a Composite of Ultrafine Magnetite Nanoparticles Interlinked by Silane Coupling Agents , 2012, International journal of environmental research and public health.

[7]  Jessilynn Taylor,et al.  Toxicological profile for vanadium , 2012 .

[8]  E. Yanful,et al.  Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. , 2010, Journal of environmental management.

[9]  Heather J. Shipley,et al.  Adsorption of arsenic to magnetite nanoparticles: Effect of particle concentration, pH, ionic strength, and temperature , 2009, Environmental toxicology and chemistry.

[10]  M. Bedzyk,et al.  Adsorption of V on a hematite (0 0 0 1) surface and its oxidation: Monolayer coverage , 2007 .

[11]  Ernö Pretsch,et al.  Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range , 2004 .

[12]  C. Peacock,et al.  Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy , 2004 .

[13]  P. Smedley,et al.  Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina , 2002 .

[14]  J. Lützenkirchen Comparison of 1-pK and 2-pK Versions of Surface Complexation Theory by the Goodness of Fit in Describing Surface Charge Data of (Hydr)oxides , 1998 .

[15]  E. Calvo,et al.  Surface electrochemical transformations on spinel iron oxide electrodes in aqueous solutions , 1996 .

[16]  A. Ivaska,et al.  All solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid internal contact , 1994 .

[17]  E. Calvo,et al.  Electrocatalysis of oxygen reduction at Fe3O4 oxide electrodes in alkaline solutions , 1992 .

[18]  J. Leckie,et al.  Surface complexation models: An evaluation of model parameter estimation using FITEQL and oxide mineral titration data , 1991 .

[19]  S. Hornkjøl,et al.  Anodic behaviour of vanadium in acid solutions , 1991 .

[20]  W. Gorski,et al.  Hydrolysis of vanadium ions (III, II) and polarographic behaviour of the V(III)/V(II) system in aqueous perchlorate solutions , 1989 .

[21]  S. Belcadi,et al.  Etude du comportement electrochimique des ions du vanadium dans des melanges eau-acide phosphorique , 1986 .

[22]  Y. Tamaura,et al.  Ferrite plating in aqueous solution: New technique for preparing magnetic thin film , 1984 .

[23]  N. A. Hampson,et al.  The electrodissolution of magnetite: Part II. The oxidation of bulk magnetite , 1980 .

[24]  J. Westall,et al.  A comparison of electrostatic models for the oxide/solution interface , 1980 .

[25]  R. Robins,et al.  Thermodynamic diagrams for the vanadium-water system at 298·15K , 1976 .

[26]  G. Raspi,et al.  Voltammetric study of the VO2+/V3+ couple at the platinized platinum electrode in perchloric acid , 1972 .

[27]  R. Armstrong,et al.  The anodic dissolution of vanadium in acid solutions , 1970 .

[28]  L. Meites,et al.  The reduction and oxidation of vanadium in acidic aqueous sulfate solutions at mercury electrodes , 1964 .

[29]  E. F. Herroun,et al.  On the Electrical Conductivity of Magnetite , 1924 .