Determination and correction of persistent biases in quantum annealers
暂无分享,去创建一个
Rupak Biswas | Alejandro Perdomo-Ortiz | Vadim N. Smelyanskiy | Bryan O’Gorman | Joseph Fluegemann | V. Smelyanskiy | R. Biswas | A. Perdomo-Ortiz | B. O’Gorman | J. Fluegemann
[1] Daniel A. Lidar,et al. Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.
[2] G. Rose,et al. Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.
[3] L. Clark,et al. Ramsey numbers and adiabatic quantum computing. , 2011, Physical review letters.
[4] Firas Hamze,et al. Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.
[5] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[6] Andrew D. King,et al. Algorithm engineering for a quantum annealing platform , 2014, ArXiv.
[7] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[8] M. W. Johnson,et al. Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.
[9] Firas Hamze,et al. Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.
[10] Vasil S. Denchev,et al. Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.
[11] S. Knysh,et al. Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.
[12] M. W. Johnson,et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.
[13] M. W. Johnson,et al. Quantum annealing with manufactured spins , 2011, Nature.
[14] Andrew D. King,et al. Performance of a quantum annealer on range-limited constraint satisfaction problems , 2015, ArXiv.
[15] Mark W. Johnson,et al. Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.
[16] Bryan O'Gorman,et al. A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.
[17] Itay Hen,et al. Unraveling Quantum Annealers using Classical Hardness , 2015, Scientific reports.
[18] Nikolaos Scarmeas,et al. The good, bad, and ugly? , 2012, Neurology.
[19] Masoud Mohseni,et al. Computational Role of Multiqubit Tunneling in a Quantum Annealer , 2015 .
[20] Daniel A. Lidar,et al. Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.
[21] Daniel A. Lidar,et al. Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.
[22] Daniel A. Lidar,et al. Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.
[23] F. Barahona. On the computational complexity of Ising spin glass models , 1982 .
[24] Daniel A. Lidar,et al. Defining and detecting quantum speedup , 2014, Science.
[25] Daniel A. Lidar,et al. Experimental signature of programmable quantum annealing , 2012, Nature Communications.
[26] Umesh Vazirani,et al. Comment on "Distinguishing Classical and Quantum Models for the D-Wave Device" , 2014, 1404.6499.
[27] Rupak Biswas,et al. A Performance Estimator for Quantum Annealers: Gauge selection and Parameter Setting , 2015, 1503.01083.
[28] Andrew J. Ochoa,et al. Best-case performance of quantum annealers on native spin-glass benchmarks: How chaos can affect success probabilities , 2015, 1505.02278.
[29] R. Biswas,et al. A quantum annealing approach for fault detection and diagnosis of graph-based systems , 2014, The European Physical Journal Special Topics.
[30] Alán Aspuru-Guzik,et al. Bayesian network structure learning using quantum annealing , 2014, The European Physical Journal Special Topics.