Determination and correction of persistent biases in quantum annealers

Calibration of quantum computers is essential to the effective utilisation of their quantum resources. Specifically, the performance of quantum annealers is likely to be significantly impaired by noise in their programmable parameters, effectively misspecification of the computational problem to be solved, often resulting in spurious suboptimal solutions. We developed a strategy to determine and correct persistent, systematic biases between the actual values of the programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames Research Center in Moffett Field, California, and another at D-Wave Systems in Burnaby, Canada. We show that the recalibration procedure not only reduces the magnitudes of the biases in the programmable parameters but also enhances the performance of the device on a set of random benchmark instances.

[1]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[2]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[3]  L. Clark,et al.  Ramsey numbers and adiabatic quantum computing. , 2011, Physical review letters.

[4]  Firas Hamze,et al.  Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.

[5]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[6]  Andrew D. King,et al.  Algorithm engineering for a quantum annealing platform , 2014, ArXiv.

[7]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[8]  M. W. Johnson,et al.  Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.

[9]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[10]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[11]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[12]  M. W. Johnson,et al.  Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.

[13]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[14]  Andrew D. King,et al.  Performance of a quantum annealer on range-limited constraint satisfaction problems , 2015, ArXiv.

[15]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[16]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[17]  Itay Hen,et al.  Unraveling Quantum Annealers using Classical Hardness , 2015, Scientific reports.

[18]  Nikolaos Scarmeas,et al.  The good, bad, and ugly? , 2012, Neurology.

[19]  Masoud Mohseni,et al.  Computational Role of Multiqubit Tunneling in a Quantum Annealer , 2015 .

[20]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[21]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[22]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[23]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[24]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[25]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[26]  Umesh Vazirani,et al.  Comment on "Distinguishing Classical and Quantum Models for the D-Wave Device" , 2014, 1404.6499.

[27]  Rupak Biswas,et al.  A Performance Estimator for Quantum Annealers: Gauge selection and Parameter Setting , 2015, 1503.01083.

[28]  Andrew J. Ochoa,et al.  Best-case performance of quantum annealers on native spin-glass benchmarks: How chaos can affect success probabilities , 2015, 1505.02278.

[29]  R. Biswas,et al.  A quantum annealing approach for fault detection and diagnosis of graph-based systems , 2014, The European Physical Journal Special Topics.

[30]  Alán Aspuru-Guzik,et al.  Bayesian network structure learning using quantum annealing , 2014, The European Physical Journal Special Topics.