Novel anion-exchange organic–inorganic hybrid membranes: Preparation and characterizations for potential use in fuel cells

Abstract A new series of supported anion-exchange organic–inorganic hybrid membranes were prepared by quaternizing the copolymer of vinylbenzyl chloride (VBC) and γ-methacryloxypropyl trimethoxy silane (γ-MPS) and then applying a sol–gel reaction to the copolymer and monophenyltriethoxysilane (EPh). The membranes were characterized for potential use in fuel cells. The results show that the physicochemical properties, including ion-exchange property, hydrophilicity, and thermal/chemical stability, can be easily controlled by adjusting the quaternization extent of the copolymer and the dosage of EPh. The hybrid membranes have relatively strong alkali resistance, high temperature tolerance (thermal degradation temperature in air, Td, in the range of 250–300 °C), high tensile strength (TS) and elongation at break ( E b ). The hydroxyl ion conductivity is in the range of 2.27–4.33 × 10 −4  S/cm.

[1]  T. Xu,et al.  Fundamental studies of homogeneous cation exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) : Membranes prepared by simultaneous aryl-sulfonation and aryl-bromination , 2006 .

[2]  J. Fauvarque,et al.  Characterization and use of anionic membranes for alkaline fuel cells , 2001 .

[3]  Vijay Ramani,et al.  Investigation of Nafion ® /HPA composite membranes for high temperature/low relative humidity PEMFC operation , 2004 .

[4]  F. Alloin,et al.  Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties , 2007 .

[5]  K. Yoon,et al.  Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell , 2003 .

[6]  Tongwen Xu,et al.  Novel anion-exchange organic-inorganic hybrid membranes prepared through sol-gel reaction and UV/thermal curing , 2008 .

[7]  K. Miyatake,et al.  Poly(arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications , 2005 .

[8]  S. Woo,et al.  Proton conductivity and methanol permeation in Nafion™/ORMOSIL prepared with various organic silanes , 2004 .

[9]  J. Choy,et al.  Inoganic–organic-hybrids as precursors to functional materials , 2001 .

[10]  T. Xu Ion exchange membranes: State of their development and perspective , 2005 .

[11]  H. Kubota,et al.  Comparative study on the preparation and properties of radiation‐grafted polymer electrolyte membranes based on fluoropolymer films , 2007 .

[12]  M. Kariduraganavar,et al.  Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications , 2006 .

[13]  R. Slade,et al.  The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation , 2003 .

[14]  R. Slade,et al.  Prospects for Alkaline Anion‐Exchange Membranes in Low Temperature Fuel Cells , 2005 .

[15]  G. Kickelbick,et al.  Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale , 2003 .

[16]  R K Nagarale,et al.  Recent developments on ion-exchange membranes and electro-membrane processes. , 2006, Advances in colloid and interface science.

[17]  Seong-Ho Choi,et al.  Organic-inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs) , 2004 .

[18]  Young Moo Lee,et al.  Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications , 2004 .

[19]  Yang Weihua,et al.  Fundamental studies of a new hybrid (inorganic–organic) positively charged membrane: membrane preparation and characterizations , 2003 .

[20]  I. Honma,et al.  High temperature proton conducting hybrid polymer electrolyte membranes , 2002 .

[21]  G. Hsiue,et al.  Microstructural and morphological characteristics of PS-SiO2 nanocomposites , 2000 .

[22]  Cellular polymer composites based on bi-component fibers , 2003 .

[23]  B. Bauer,et al.  Nanoparticle Formation within Dendrimer-Containing Polymer Networks: Route to New Organic−Inorganic Hybrid Materials , 2001 .

[24]  Qunhui Guo,et al.  Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes , 1999 .

[25]  Q. Liu,et al.  Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells , 2008 .

[26]  Kenneth A. Mauritz,et al.  Organic-Inorganic Hybrid Materials: Perfluorinated Ionomers as Sol-Gel Polymerization Templates for Inorganic Alkoxides , 1998 .

[27]  Dan Wu,et al.  Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell , 2008 .

[28]  Deborah J. Jones,et al.  Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells , 2003 .

[29]  K. Tadanaga,et al.  Utilization of glass paper as a support of proton conductive inorganic–organic hybrid membranes based on 3-glycidoxypropyltrimethoxysilane , 2005 .

[30]  P. Gómez‐Romero Hybrid Organic–Inorganic Materials—In Search of Synergic Activity , 2001 .

[31]  P. Shen,et al.  Quaternized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells , 2006 .

[32]  T. Xu,et al.  Free-standing anion-exchange PEO–SiO2 hybrid membranes , 2008 .

[33]  H. Hamelers,et al.  Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. , 2007, Water research.

[34]  T. Xu,et al.  Fundamental studies of a new series of anion exchange membranes: Membranes prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) and pyridine , 2006 .

[35]  V. Silva,et al.  Zirconium oxide hybrid membranes for direct methanol fuel cells—Evaluation of transport properties , 2006 .

[36]  Liang Hong,et al.  Embedded polymerization driven asymmetric PEM for direct methanol fuel cells , 2006 .

[37]  Zheng-ming Huang,et al.  Electrospinning of nylon-6,66,1010 terpolymer , 2006 .

[38]  A. Durán,et al.  Synthesis and characterization of proton-conducting sol–gel membranes produced from 1,4-bis(triethoxysilyl)benzene and (3-glycidoxypropyl)trimethoxysilane , 2005 .

[39]  Fuqiang Liu,et al.  Nafion/PTFE Composite Membranes for Fuel Cell Applications , 2003 .

[40]  Alain Walcarius,et al.  Analytical Applications of Silica-Modified Electrodes -A Comprehensive Review , 1999 .

[41]  T. Xu,et al.  New anion exchanger organic–inorganic hybrid materials and membranes from a copolymerof glycidylmethacrylate and γ‐methacryloxypropyl trimethoxy silane , 2006 .

[42]  M. Reis,et al.  Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. , 2006, Water research.

[43]  T. Yamaki,et al.  Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films , 2006 .

[44]  M. Xiao,et al.  Novel sulfonated poly(phthalazinone ether ketone) ionomers containing benzonitrile moiety for PEM fuel cell applications , 2007 .