Simultaneous Stabilization and Tracking of Nonholonomic Mobile Robots: A Lyapunov-Based Approach

A smooth time-varying controller is proposed to simultaneously address the stabilization and tracking problems of nonholonomic mobile robots for most admissible reference trajectories without switching. The controller is developed with the aid of a delicately designed time-varying signal and Lyapunov method. Computational simplification and asymptotic convergence of regulation or tracking errors are achieved by the proposed controller. Our approach provides an interesting way to unify the existing results on point stabilization and trajectory tracking of mobile robots. The simulation and experimental results on a wheeled mobile robot are presented to demonstrate the effectiveness of the proposed controller.

[1]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[2]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[3]  Zhong-Ping Jiang,et al.  A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[4]  Dongbing Gu,et al.  Receding horizon tracking control of wheeled mobile robots , 2006, IEEE Transactions on Control Systems Technology.

[5]  Zhong-Ping Jiang,et al.  Global exponential setpoint control of wheeled mobile robots: a Lyapunov approach , 2000, Autom..

[6]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[7]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[8]  Wilfrid Perruquetti,et al.  Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems , 2003, Autom..

[9]  Ti-Chung Lee EXPONENTIAL STABILIZATION FOR NONLINEAR SYSTEMS WITH APPLICATIONS TO NONHOLONOMIC SYSTEMS , 2002 .

[10]  Linda Bushnell,et al.  Stabilization of multiple input chained form control systems , 1995 .

[11]  Zhong-Ping Jiang,et al.  A recursive technique for tracking control of nonholonomic systems in chained form , 1999, IEEE Trans. Autom. Control..

[12]  Zhong-Ping Jiang,et al.  Iterative design of time-varying stabilizers for multi-input systems in chained form , 1996 .

[13]  Zhong-Ping Jiang,et al.  A Generalization of Krasovskii-LaSalle Theorem for Nonlinear Time-Varying Systems: Converse Results and Applications , 2005, IEEE Trans. Autom. Control..

[14]  S. Shankar Sastry,et al.  Stabilization of trajectories for systems with nonholonomic constraints , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[15]  Warren E. Dixon,et al.  Global exponential tracking control of a mobile robot system via a PE condition , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[16]  Yaonan Wang,et al.  Simultaneous stabilization and tracking of wheeled mobile robots via chained form , 2014, 11th IEEE International Conference on Control & Automation (ICCA).

[17]  David A. Lizárraga,et al.  Obstructions to the Existence of Universal Stabilizers for Smooth Control Systems , 2004, Math. Control. Signals Syst..

[18]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[19]  Weiliang Xu,et al.  Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots , 2000, IEEE Trans. Robotics Autom..

[20]  Antonio Loría,et al.  Relaxed persistency of excitation for uniform asymptotic stability , 2001, IEEE Trans. Autom. Control..

[21]  Yong-sheng Ding,et al.  A generalized Gronwall inequality and its application to a fractional differential equation , 2007 .

[22]  Elena Panteley,et al.  UGAS of Skew-symmetric Time-varying Systems: Application to Stabilization of Chained Form Systems , 2002, Eur. J. Control.

[23]  Z. Jiang A unified Lyapunov framework for stabilization and tracking of nonholonomic systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[24]  Henk Nijmeijer,et al.  Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..

[25]  Gyula Mester,et al.  Motion Control of Wheeled Mobile Robots , 2006 .

[26]  Zhong-Ping Jiang,et al.  Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance , 2013, Syst. Control. Lett..

[27]  Zhong-Ping Jiang,et al.  Simultaneous tracking and stabilization of mobile robots: an adaptive approach , 2004, IEEE Transactions on Automatic Control.

[28]  R. Murray,et al.  Exponential stabilization of driftless nonlinear control systems using homogeneous feedback , 1997, IEEE Trans. Autom. Control..

[29]  Pascal Morin,et al.  Control of Nonholonomic Mobile Robots Based on the Transverse Function Approach , 2009, IEEE Transactions on Robotics.

[30]  Yu-Ping Tian,et al.  Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control , 2002, Autom..

[31]  A. Astolfi Discontinuous control of nonholonomic systems , 1996 .

[32]  Shuzhi Sam Ge,et al.  Stabilization of uncertain nonholonomic systems via time-varying sliding mode control , 2004, IEEE Transactions on Automatic Control.

[33]  Alireza Mohammad Shahri,et al.  Adaptive robust time-varying control of uncertain non-holonomic robotic systems , 2012 .

[34]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[35]  Zhong-Ping Jiang,et al.  Saturated stabilization and tracking of a nonholonomic mobile robot , 2001 .

[36]  H Henk Nijmeijer,et al.  Linear controllers for exponential tracking of systems in chained-form , 2000 .

[37]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[38]  Zhong-Ping Jiang,et al.  New cascade approach for global /spl kappa/-exponential tracking of underactuated ships , 2004, IEEE Transactions on Automatic Control.

[39]  Norihiko Adachi,et al.  Adaptive tracking control of a nonholonomic mobile robot , 2000, IEEE Trans. Robotics Autom..

[40]  Elena Panteley,et al.  Exponential tracking control of a mobile car using a cascaded approach , 1998 .

[41]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[42]  Carlos Canudas de Wit,et al.  NONLINEAR CONTROL DESIGN FOR MOBILE ROBOTS , 1994 .

[43]  Shuzhi Sam Ge,et al.  Adaptive stabilization of uncertain nonholonomic systems by state and output feedback , 2003, Autom..

[44]  D. Dawson,et al.  Robust tracking and regulation control for mobile robots , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[45]  Weiliang Xu,et al.  Adaptive tracking control of uncertain nonholonomic dynamic system , 2001, IEEE Trans. Autom. Control..

[46]  O. J. Sørdalen,et al.  Exponential stabilization of nonholonomic chained systems , 1995, IEEE Trans. Autom. Control..

[47]  Antonio Loría,et al.  A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems , 2005, IEEE Transactions on Automatic Control.