Simulation of Artificial Intelligence Agents using Modelica and the DLR Visualization Library

This paper introduces a scheme for testing artificial intelligence algorithms of autonomous systems using Modelica and the DLR Visualization Library. The simulation concept follows the ’Software-in-the-loop’ principle, whereas no adaptations are made to the tested algorithms. The environment is replaced by an artificial world and the rest of the autonomous system is modeled in Modelica. The scheme is introduced and explained by using the example of the ROboMObil, which is a robotic electric vehicle developed by the DLR’s Robotics and Mechatronics Center.

[1]  Rs Roel Pieters,et al.  Visual Servo Control , 2012 .

[2]  Darius Burschka,et al.  Adaptive and Generic Corner Detection Based on the Accelerated Segment Test , 2010, ECCV.

[3]  Jared Jackson Microsoft robotics studio: A technical introduction , 2007, IEEE Robotics & Automation Magazine.

[4]  Sebastian Thrun,et al.  Junior: The Stanford entry in the Urban Challenge , 2008, J. Field Robotics.

[5]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004 .

[6]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004, ArXiv.

[7]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[8]  Richard T. Vaughan,et al.  The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems , 2003 .

[9]  Nobuto Matsuhira,et al.  Virtual Robot Experimentation Platform V-REP: A Versatile 3D Robot Simulator , 2010, SIMPAR.

[10]  Tobias Bellmann Interactive Simulations and advanced Visualization with Modelica , 2009 .

[11]  Johann Bals,et al.  ROMO - THE ROBOTIC ELECTRIC VEHICLE , 2011 .

[12]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[13]  Darius Burschka,et al.  Robotisches Elektromobil mit kamerabasiertem Autonomieansatz , 2011 .

[14]  Darius Burschka,et al.  Robotic Electric Vehicle with Camera-Based Autonomy Approach , 2011 .

[15]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[16]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Gerd Hirzinger,et al.  Tackling multi-sensory 3D data acquisition and fusion , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Berthold Bäuml,et al.  Agile Robot Development (aRD): A Pragmatic Approach to Robotic Software , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.