A Profile-Based Approach to Parametric Sensitivity Analysis of Nonlinear Regression Models

Predictions from a nonlinear regression model are subject to uncertainties propagated from the estimated parameters in the model. Parameters exerting the strongest influence on model predictions can be identified by a sensitivity analysis. In this article, a new parametric sensitivity measure is introduced, based on the profiling algorithm developed by Bates and Watts for constructing likelihood intervals for the individual parameters in nonlinear regression models. In contrast with traditional sensitivity coefficients, this profile-based sensitivity measure accounts for both correlation structure among the parameters and model nonlinearity. It also provides sensitivity information over wide ranges of parameter uncertainties. Application of the proposed approach is illustrated with three examples.

[1]  Joseph M. Calo,et al.  Sensitivity analysis in chemical kinetics: Recent developments and computational comparisons , 1984 .

[2]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[3]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[4]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[5]  John Durkin,et al.  Tools and applications , 2002 .

[6]  K.,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[7]  G. P. Clarke,et al.  Approximate Confidence Limits for a Parameter Function in Nonlinear Regression , 1987 .

[8]  D. G. Watts,et al.  Relative Curvature Measures of Nonlinearity , 1980 .

[9]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[10]  R. Jennrich,et al.  The Signed Root Deviance Profile and Confidence Intervals in Maximum Likelihood Analysis , 1996 .

[11]  E. Beale,et al.  Confidence Regions in Non‐Linear Estimation , 1960 .

[12]  K. Shuler,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[13]  John O. Rawlings,et al.  MARGINAL CURVATURES FOR FUNCTIONS OF PARAMETERS IN NONLINEAR REGRESSION , 1998 .

[14]  L. Biegler,et al.  A reduced hessian strategy for sensitivity analysis of optimal flowsheets , 1987 .

[15]  M. Kramer,et al.  Sensitivity Analysis in Chemical Kinetics , 1983 .

[16]  Ignacio E. Grossmann,et al.  A sensitivity based approach for flexibility analysis and design of linear process systems , 1995 .

[17]  Savino Longo,et al.  Fourier-transform sensitivity analysis , 1994 .

[18]  S. Ferson,et al.  Quality assurance for Monte Carlo risk assessment , 1995, Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society.

[19]  Donald G. Watts,et al.  PROFILE SUMMARIES FOR ARIMA TIME SERIES MODEL PARAMETERS , 1991 .

[20]  R. Schainker,et al.  On the statistical sensitivity analysis of models for chemical kinetics , 1975 .

[21]  E. J. Williams Exact Fiducial Limits in Non-Linear Estimation , 1962 .

[22]  W. V. Loscutoff,et al.  General sensitivity theory , 1972 .

[23]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[24]  T. Turányi Sensitivity analysis of complex kinetic systems. Tools and applications , 1990 .

[25]  D. G. Watts,et al.  Parameter Transformations for Improved Approximate Confidence Regions in Nonlinear Least Squares , 1981 .

[26]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[27]  E. Marian Scott Uncertainty and sensitivity studies of models of environmental systems , 1996, Winter Simulation Conference.

[28]  Sanford Weisberg,et al.  Confidence Curves in Nonlinear Regression , 1990 .

[29]  Ronald L. Iman,et al.  Risk methodology for geologic disposal of radioactive waste: small sample sensitivity analysis techniques for computer models, with an application to risk assessment , 1980 .