Next generation brain implant coatings and nerve regeneration via novel conductive nanocomposite development

Composite materials based on the coupling of conductive organic polymers and carbon nanotubes have shown that they possess properties of the individual components with a synergistic effect. Multi-wall carbon nanotube (MWCNT)/ polymer composites are hybrid materials that combine numerous mechanical, electrical and chemical properties and thus, constitute ideal biomaterials for a wide range of regenerative medicine applications. Although, complete dispersion of CNT in a polymer matrix has rarely been achieved, in this study we have succeeded high dispersibility of CNT in POSS-PCU and POSS-PCL, novel polymers based on polyprolactone and polycarbonate polyurethane (PCU) and poly(caprolactoneurea)urethane both having incorporated polyhedral oligomeric silsesquioxane (POSS). We report the synthesis and characterization of a novel biomaterial that possesses unique properties of being electrically conducting and thus being capable of electronic interfacing with tissue. To this end, POSS-PCU/MWCNT composite can be used as a biomaterial for the development of nerve guidance channels to promote nerve regeneration and POSS-PCL/MWCNT as a substrate to increase electronic interfacing between neurons and micro-machined electrodes for potential applications in neural probes, prosthetic devices and brain implants.