Asymptotics of Multivariate Sequences II: Multiple Points of the Singular Variety

Let $F(\b{z})=\sum_\b{r} a_\b{r}\b{z^r}$ be a multivariate generating function that is meromorphic in some neighbourhood of the origin of $\mathbb{C}^d$, and let $\sing$ be its set of singularities. Effective asymptotic expansions for the coefficients can be obtained by complex contour integration near points of $\sing$.In the first article in this series, we treated the case of smooth points of $\sing$. In this article we deal with multiple points of $\sing$. Our results show that the central limit (Ornstein–Zernike) behaviour typical of the smooth case does not hold in the multiple point case. For example, when $\sing$ has a multiple point singularity at $(1, \ldots, 1)$, rather than $a_\b{r}$ decaying as $|\b{r}|^{-1/2}$ as $|\b{r}| \to \infty$, $a_\b{r}$ is very nearly polynomial in a cone of directions.

[1]  R. Pemantle,et al.  Asymptotics of Multivariate Sequences, part I. Smooth points of the singular variety , 2000 .

[2]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences: I. Smooth Points of the Singular Variety , 2002, J. Comb. Theory, Ser. A.

[3]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[4]  Manuel E. Lladser,et al.  Asymptotic enumeration via singularity analysis , 2003 .

[5]  J. M. Boardman,et al.  Singularties of differentiable maps , 1967 .

[6]  R. Lyons,et al.  Coalescing Particles on an Interval , 1999 .

[7]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[8]  Jesús A. De Loera,et al.  Algebraic unimodular counting , 2001, Math. Program..

[9]  Herbert S. Wilf,et al.  Generating functionology , 1990 .

[10]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[11]  E. Capelas de Oliveira On generating functions , 1992 .

[12]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[13]  Robin Pemantle,et al.  Generating functions with high-order poles are nearly polynomial , 2000 .

[14]  D. Klarner,et al.  The diagonal of a double power series , 1971 .

[15]  Andrea L. Bertozzi,et al.  Multidimensional Residues, Generating Functions, and Their Application to Queueing Networks , 1993, SIAM Rev..

[16]  Yuliy Baryshnikov,et al.  Convolutions of inverse linear functions via multivariate residues , 2004 .

[17]  A K Tsikh,et al.  CONDITIONS FOR ABSOLUTE CONVERGENCE OF THE TAYLOR COEFFICIENT SERIES OF A MEROMORPHIC FUNCTION OF TWO VARIABLES , 1993 .

[18]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[19]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[20]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[21]  J. Hunter Two Queues in Parallel , 1969 .