Orthogonal acoustic dimensions define auditory field maps in human cortex

The functional organization of human auditory cortex has not yet been characterized beyond a rudimentary level of detail. Here, we use functional MRI to measure the microstructure of orthogonal tonotopic and periodotopic gradients forming complete auditory field maps (AFMs) in human core and belt auditory cortex. These AFMs show clear homologies to subfields of auditory cortex identified in nonhuman primates and in human cytoarchitectural studies. In addition, we present measurements of the macrostructural organization of these AFMs into “clover leaf” clusters, consistent with the macrostructural organization seen across human visual cortex. As auditory cortex is at the interface between peripheral hearing and central processes, improved understanding of the organization of this system could open the door to a better understanding of the transformation from auditory spectrotemporal signals to higher-order information such as speech categories.

[1]  D. Pandya,et al.  Architectonic analysis of the auditory‐related areas of the superior temporal region in human brain , 2007, The Journal of comparative neurology.

[2]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[3]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[4]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[6]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[7]  A. Dale,et al.  Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. , 2004, Journal of neurophysiology.

[8]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[9]  J. Kaas,et al.  Subdivisions of AuditoryCortex and Levels of Processing in Primates , 1998, Audiology and Neurotology.

[10]  Nikos K Logothetis,et al.  Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. , 2009, Magnetic resonance imaging.

[11]  Teemu Rinne,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[12]  Yoshinao Kajikawa,et al.  Cortical connections of the auditory cortex in marmoset monkeys: Core and medial belt regions , 2006, The Journal of comparative neurology.

[13]  W. Vanduffel,et al.  Visual Field Map Clusters in Macaque Extrastriate Visual Cortex , 2009, The Journal of Neuroscience.

[14]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[15]  D J Heeger,et al.  Robust multiresolution alignment of MRI brain volumes , 2000, Magnetic resonance in medicine.

[16]  J. Rauschecker,et al.  Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. , 2004, Journal of neurophysiology.

[17]  Lisa A. de la Mothe,et al.  Thalamic connections of the auditory cortex in marmoset monkeys: Core and medial belt regions , 2006, The Journal of comparative neurology.

[18]  D. Lewis,et al.  Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus , 2005, The Journal of comparative neurology.

[19]  Timothy D. Griffiths,et al.  Orthogonal representation of sound dimensions in the primate midbrain , 2011, Nature Neuroscience.

[20]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[21]  Biao Tian,et al.  Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. , 2004, Journal of neurophysiology.

[22]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[23]  T. Dau,et al.  Characterizing frequency selectivity for envelope fluctuations. , 2000, The Journal of the Acoustical Society of America.

[24]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[25]  B. Kollmeier,et al.  Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. , 1997, The Journal of the Acoustical Society of America.

[26]  Colin Humphries,et al.  Tonotopic organization of human auditory cortex , 2010, NeuroImage.

[27]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Merzenich,et al.  Representation of the cochlear partition of the superior temporal plane of the macaque monkey. , 1973, Brain research.

[29]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[30]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[31]  Mathieu Ducros,et al.  Function and connectivity in human primary auditory cortex: a combined fMRI and DTI study at 3 Tesla. , 2007, Cerebral cortex.

[32]  P. Heil,et al.  Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography , 1997, Journal of Comparative Physiology A.

[33]  B. Godde,et al.  A Map of Periodicity Orthogonal to Frequency Representation in the Cat Auditory Cortex , 2009, Frontiers in integrative neuroscience.

[34]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[35]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[36]  Brian Barton,et al.  Pinwheel cartography: A fundamental organizing principle of the human visual system , 2010 .

[37]  N. Logothetis,et al.  Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex , 2006, PLoS biology.

[38]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. A. Miller,et al.  The Perception of Repeated Bursts of Noise , 1948 .

[40]  Richard S. J. Frackowiak,et al.  Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus , 2011, The Journal of Neuroscience.

[41]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[42]  J. Rauschecker,et al.  Functional specialization of medial auditory belt cortex in the alert rhesus monkey. , 2009, Journal of neurophysiology.

[43]  Brian Barton,et al.  Visual Field Map Organization in Human Visual Cortex , 2012 .

[44]  I. Hsieh,et al.  Detection of sinusoidal amplitude modulation in logarithmic frequency sweeps across wide regions of the spectrum , 2010, Hearing Research.

[45]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.