Recent developments in redox-active olefin polymerization catalysts

[1]  Dunwei Wang,et al.  Electrochemically Switchable Ring-Opening Polymerization of Lactide and Cyclohexene Oxide. , 2018, Journal of the American Chemical Society.

[2]  B. Long,et al.  Photochemical regulation of a redox-active olefin polymerization catalyst: controlling polyethylene microstructure with visible light , 2018 .

[3]  Junnian Wei,et al.  Correction to “Mechanistic Studies of Redox-Switchable Copolymerization of Lactide and Cyclohexene Oxide by a Zirconium Complex” , 2017, Organometallics.

[4]  P. Diaconescu,et al.  Investigation of redox switchable titanium and zirconium catalysts for the ring opening polymerization of cyclic esters and epoxides , 2017 .

[5]  M. A. Ortuño,et al.  The role of ligand redox non-innocence in ring-opening polymerization reactions catalysed by bis(imino)pyridine iron alkoxide complexes. , 2017, Dalton transactions.

[6]  Changle Chen,et al.  Accessing Multiple Catalytically Active States in Redox-Controlled Olefin Polymerization , 2017 .

[7]  B. Long,et al.  Accessing multiple polyethylene grades via a single redox-active olefin polymerization catalyst , 2017 .

[8]  Changle Chen,et al.  Redox control in palladium catalyzed norbornene and alkyne polymerization , 2017 .

[9]  Min Chen,et al.  Redox Control in Olefin Polymerization Catalysis by Phosphine–Sulfonate Palladium and Nickel Complexes , 2017 .

[10]  Changle Chen,et al.  Unsymmetrical α-diimine palladium catalysts and their properties in olefin (co)polymerization , 2017 .

[11]  Changle Chen,et al.  Rational Design of High-Performance Phosphine Sulfonate Nickel Catalysts for Ethylene Polymerization and Copolymerization with Polar Monomers , 2017 .

[12]  O. Daugulis,et al.  Mechanistic Studies of Pd(II)-Catalyzed Copolymerization of Ethylene and Vinylalkoxysilanes: Evidence for a β-Silyl Elimination Chain Transfer Mechanism. , 2016, Journal of the American Chemical Society.

[13]  Rong Zhang,et al.  Redox Switchable Copolymerization of Cyclic Esters and Epoxides by a Zirconium Complex , 2016 .

[14]  B. Long,et al.  Modulating Polyolefin Copolymer Composition via Redox-Active Olefin Polymerization Catalysts. , 2016, ACS macro letters.

[15]  J. Byers,et al.  Redox-triggered crosslinking of a degradable polymer , 2016 .

[16]  Changle Chen,et al.  Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. , 2016, Chemical communications.

[17]  G. Coates,et al.  Semi-Crystalline Polar Polyethylene: Ester-Functionalized Linear Polyolefins Enabled by a Functional-Group-Tolerant, Cationic Nickel Catalyst. , 2016, Angewandte Chemie.

[18]  David A. Nicewicz,et al.  Organic Photoredox Catalysis. , 2016, Chemical reviews.

[19]  P. Diaconescu,et al.  Switchable Polymerization of Norbornene Derivatives by a Ferrocene‐Palladium(II) Heteroscorpionate Complex , 2016 .

[20]  J. Byers,et al.  Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst. , 2016, Angewandte Chemie.

[21]  C. Bielawski,et al.  Switchable Polymerization Catalysts. , 2016, Chemical reviews.

[22]  Changle Chen,et al.  Redox Control in Olefin Polymerization and Copolymerization , 2016 .

[23]  Lihua Guo,et al.  Investigations of the Ligand Electronic Effects on α-Diimine Nickel(II) Catalyzed Ethylene Polymerization , 2016, Polymers.

[24]  Xiao-hui Hu,et al.  Ethylene polymerization by salicylaldimine nickel(II) complexes containing a dibenzhydryl moiety. , 2016, Dalton transactions.

[25]  B. Long,et al.  Redox-Active Ligands: An Advanced Tool To Modulate Polyethylene Microstructure. , 2016, Journal of the American Chemical Society.

[26]  Lihua Guo,et al.  Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization , 2016 .

[27]  Changle Chen,et al.  Ethylene Polymerization by Xanthene‐Bridged Dinuclear α‐Diimine NiII Complexes , 2016 .

[28]  Changle Chen,et al.  Redox-Controlled Olefin (Co)Polymerization Catalyzed by Ferrocene-Bridged Phosphine-Sulfonate Palladium Complexes. , 2015, Angewandte Chemie.

[29]  Peng Xiang,et al.  Homo- and Co-polymerization of norbornene and methyl acrylate with Pd–diimine catalysts , 2015 .

[30]  Lihua Guo,et al.  (α-Diimine)palladium catalyzed ethylene polymerization and (co)polymerization with polar comonomers , 2015, Science China Chemistry.

[31]  Y. Mu,et al.  The ligand redox behavior and role in 1,2-bis[(2,6-diisopropylphenyl)imino]-acenaphthene nickel-TMA(MAO) systems for ethylene polymerization. , 2015, Chemical communications.

[32]  Dong‐Gyun Kim,et al.  Living Vinyl Addition Polymerization of Substituted Norbornenes by a t-Bu3P-Ligated Methylpalladium Complex. , 2015, ACS macro letters.

[33]  Y. Ota,et al.  Quantification of the steric influence of alkylphosphine-sulfonate ligands on polymerization, leading to high-molecular-weight copolymers of ethylene and polar monomers. , 2014, Journal of the American Chemical Society.

[34]  Jonathan L. Brosmer,et al.  Redox control of group 4 metal ring-opening polymerization activity toward L-lactide and ε-caprolactone. , 2014, Journal of the American Chemical Society.

[35]  Jingying Liu,et al.  Pd(II) complexes bearing di- and monochelate fluorinated β-ketonaphthyliminato ligand and their catalytic properties towards vinyl-addition polymerization and copolymerization of norbornene and ester-functionalized norbornene derivative , 2014 .

[36]  B. Long,et al.  Enhancing α-Diimine Catalysts for High-Temperature Ethylene Polymerization , 2014 .

[37]  S. Mecking,et al.  Heterocycle-Substituted Phosphinesulfonato Palladium(II) Complexes for Insertion Copolymerization of Methyl Acrylate , 2014 .

[38]  Zefang Xiao,et al.  Polymerization of α-Olefins Using a Camphyl α-Diimine Nickel Catalyst at Elevated Temperature , 2014 .

[39]  K. Nozaki,et al.  Transition-Metal-Catalyzed Functional Polyolefin Synthesis: Effecting Control through Chelating Ancillary Ligand Design and Mechanistic Insights , 2014 .

[40]  Lei Zhang,et al.  Design of thermally stable amine-imine nickel catalyst precursors for living polymerization of ethylene: effect of ligand substituents on catalytic behavior and polymer properties. , 2014, Chemistry.

[41]  Wen‐Hua Sun,et al.  Synthesis and characterization of 2-(2-benzhydrylnaphthyliminomethyl)pyridylnickel halides: formation of branched polyethylene. , 2014, Dalton transactions.

[42]  Yiwang Chen,et al.  Substituent effects and activation mechanism of norbornene polymerization catalyzed by three-dimensional geometry α-diimine palladium complexes , 2014 .

[43]  Wen‐Hua Sun,et al.  2-(1-(2-Benzhydrylnaphthylimino)ethyl)pyridylnickel halides: synthesis, characterization, and ethylene polymerization behavior. , 2014, Dalton transactions.

[44]  K. Nozaki Polymerization of Polar Monomers , 2014 .

[45]  B. Long,et al.  A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. , 2013, Journal of the American Chemical Society.

[46]  J. Byers,et al.  Redox-controlled polymerization of lactide catalyzed by bis(imino)pyridine iron bis(alkoxide) complexes. , 2013, Journal of the American Chemical Society.

[47]  E. T. Nadres,et al.  Synthesis of Highly Branched Polyethylene Using “Sandwich” (8-p-Tolyl naphthyl α-diimine)nickel(II) Catalysts , 2013 .

[48]  V. Lynch,et al.  Synthesis and study of olefin metathesis catalysts supported by redox-switchable diaminocarbene[3]ferrocenophanes. , 2013, Dalton transactions.

[49]  V. Goldbach,et al.  Electronic Influences in Phosphinesulfonato Palladium(II) Polymerization Catalysts , 2013 .

[50]  M. Gallei,et al.  Oxidation-triggered ring-opening metathesis polymerization. , 2013, Chemistry.

[51]  D. MacMillan,et al.  Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. , 2013, Chemical reviews.

[52]  Weibing Xu,et al.  Chiral Naphthyl-α-diimine Nickel(II) Catalysts Bearing sec-Phenethyl Groups: Chain-Walking Polymerization of Ethylene at High Temperature and Stereoselective Polymerization of Methyl Methacrylate at Low Temperature , 2013 .

[53]  Wen‐Hua Sun,et al.  Nickel(II) complexes bearing 4,5-bis(arylimino)pyrenylidenes: synthesis, characterization, and ethylene polymerization behaviour. , 2013, Dalton transactions.

[54]  Wen‐Hua Sun,et al.  Methylene-bridged bimetallic α-diimino nickel(II) complexes: synthesis and high efficiency in ethylene polymerization. , 2013, Dalton transactions.

[55]  S. Mecking,et al.  Incorporation of vinyl chloride in insertion polymerization. , 2013, Angewandte Chemie.

[56]  Ayusman Sen,et al.  Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. , 2013, Accounts of chemical research.

[57]  Wen‐Hua Sun,et al.  2,6-Dibenzhydryl- N -(2-phenyliminoacenaphthylenylidene)-4-chloro-aniline nickel dihalides: Synthesis, characterization and ethylene polymerization for polyethylenes with high molecular weights , 2013 .

[58]  R. Crabtree,et al.  Redox-active ligands in catalysis. , 2013, Chemical Society reviews.

[59]  Yiwang Chen,et al.  Ni(II) and Pd(II) complexes bearing benzocyclohexane–ketoarylimine for copolymerization of norbornene with 5‐norbornene‐2‐carboxylic ester , 2012 .

[60]  L. Cavallo,et al.  Activation and Deactivation of Neutral Palladium(II) Phosphinesulfonato Polymerization Catalysts , 2012 .

[61]  Xiaoyuan Zhou,et al.  Enhancement of Chain Growth and Chain Transfer Rates in Ethylene Polymerization by (Phosphine-sulfonate)PdMe Catalysts by Binding of B(C6F5)3 to the Sulfonate Group , 2012 .

[62]  Wen‐Hua Sun,et al.  2-[1-(2,6-Dibenzhydryl-4-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridylnickel(II) halides: Synthesis, characterization and ethylene oligomerization behavior , 2012 .

[63]  Tianpin Wu,et al.  Redox control of a polymerization catalyst by changing the oxidation state of the metal center. , 2011, Chemical communications.

[64]  Guang Wu,et al.  Linear, high molecular weight polyethylene from a discrete, mononuclear phosphinoarenesulfonate complex of nickel(II). , 2011, Chemical communications.

[65]  Jeffrey T. Miller,et al.  Redox control of a ring-opening polymerization catalyst. , 2011, Journal of the American Chemical Society.

[66]  M. Conley,et al.  cis/trans isomerization of phosphinesulfonate palladium(II) complexes. , 2011, Angewandte Chemie.

[67]  Z. Guan,et al.  Systematic Investigation of Ligand Substitution Effects in Cyclophane-Based Nickel(II) and Palladium(II) Olefin Polymerization Catalysts(1) , 2011 .

[68]  Wen‐Hua Sun,et al.  2,6-Dibenzhydryl-N-(2-phenyliminoacenaphthylenylidene)-4-methylbenzenamine Nickel Dibromides: Synthesis, Characterization, and Ethylene Polymerization , 2011 .

[69]  Z. Guan,et al.  Designing late-transition metal catalysts for olefin insertion polymerization and copolymerization. , 2010, Chemical communications.

[70]  K. Nozaki,et al.  Coordination-insertion copolymerization of polar vinyl monomers by palladium catalysts. , 2010, Chemical record.

[71]  Louisa J. E. Stanlake,et al.  Ti and Zr complexes of ferrocenyl amidinates. , 2010, Dalton transactions.

[72]  C. Janiak,et al.  Oligomers and soluble polymers from the vinyl polymerization of norbornene and 5-vinyl-2-norbornene with cationic palladium catalysts , 2010 .

[73]  V. Lynch,et al.  Arrested catalysis: controlling Kumada coupling activity via a redox-active N-heterocyclic carbene. , 2010, Journal of the American Chemical Society.

[74]  Z. Guan,et al.  Effect of Ligand Electronics on the Stability and Chain Transfer Rates of Substituted Pd(II) α-Diimine Catalysts(1) , 2010 .

[75]  C. Janiak,et al.  Palladium(II) complexes with pentafluorophenyl ligands: structures, C6F5 fluxionality by 2D-NMR studies and pre-catalysts for the vinyl addition polymerization of norbornene. , 2010, Dalton transactions.

[76]  K. Nozaki,et al.  Coordination-insertion copolymerization of fundamental polar monomers. , 2009, Chemical reviews.

[77]  E. Chen Coordination polymerization of polar vinyl monomers by single-site metal catalysts. , 2009, Chemical reviews.

[78]  Ying Xu,et al.  Thermostable α-Diimine Nickel(II) Catalyst for Ethylene Polymerization: Effects of the Substituted Backbone Structure on Catalytic Properties and Branching Structure of Polyethylene , 2009 .

[79]  R. A. Moorhouse,et al.  Gamma-agostic species as key intermediates in the vinyl addition polymerization of norbornene with cationic (allyl)Pd catalysts: synthesis and mechanistic insights. , 2009, Journal of the American Chemical Society.

[80]  Philipp Roesle,et al.  Insertion polymerization of acrylate. , 2009, Journal of the American Chemical Society.

[81]  S. Mecking,et al.  Deactivation pathways of neutral Ni(II) polymerization catalysts. , 2009, Journal of the American Chemical Society.

[82]  G. Salas,et al.  Palladium Catalysts for Norbornene Polymerization. A Study by NMR and Calorimetric Methods , 2008 .

[83]  Othmar Marti,et al.  New nickel(II) diimine complexes and the control of polyethylene microstructure by catalyst design. , 2007, Journal of the American Chemical Society.

[84]  M. Yamashita,et al.  Syntheses and Structures of Bulky Monophosphine-Ligated Methylpalladium Complexes: Application to Homo- and Copolymerization of Norbornene and/or Methoxycarbonylnorbornene , 2006 .

[85]  Tao Hu,et al.  Novel highly active binuclear neutral nickel and palladium complexes as precatalysts for norbornene polymerization , 2006 .

[86]  A. White,et al.  Redox control within single-site polymerization catalysts. , 2006, Journal of the American Chemical Society.

[87]  David J. Williams,et al.  Ferrocene-Substituted Bis(imino)pyridine Iron and Cobalt Complexes: Toward Redox-Active Catalysts for the Polymerization of Ethylene , 2006 .

[88]  Andrew J. P. White,et al.  The synthesis, coordination chemistry and ethylene polymerisation activity of ferrocenediyl nitrogen-substituted ligands and their metal complexes , 2005 .

[89]  H. Plenio,et al.  Redox-switchable phase tags for recycling of homogeneous catalysts. , 2005, Angewandte Chemie.

[90]  Z. Guan,et al.  Ligand Electronic Effects on Late Transition Metal Polymerization Catalysts , 2005 .

[91]  R. Crabtree,et al.  Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes , 2004 .

[92]  A. Ionkin,et al.  ortho-5-Methylfuran- and Benzofuran-Substituted η3-Allyl(α-diimine)nickel(II) Complexes: Syntheses, Structural Characterization, and the First Polymerization Results† , 2004 .

[93]  J. Ziller,et al.  Cyclophane-based highly active late-transition-metal catalysts for ethylene polymerization. , 2004, Angewandte Chemie.

[94]  J. C. Chadwick Ziegler–Natta Catalysts , 2003 .

[95]  A. Shafir,et al.  Zirconium complexes incorporating diaryldiamidoferrocene ligands: generation of cationic derivatives and polymerization activity towards ethylene and 1-hexene , 2003 .

[96]  Andrew J. P. White,et al.  Synthetic, spectroscopic and olefin oligomerisation studies on nickel and palladium complexes containing ferrocene substituted nitrogen donor ligands , 2003 .

[97]  V. C. Gibson,et al.  Advances in non-metallocene olefin polymerization catalysis. , 2003, Chemical reviews.

[98]  Z. Guan Control of polymer topology by chain-walking catalysts. , 2002, Chemistry.

[99]  G. Coates,et al.  Catalysts for the living insertion polymerization of alkenes: access to new polyolefin architectures using Ziegler-Natta chemistry. , 2002, Angewandte Chemie.

[100]  H. Cramail,et al.  Single-Site Catalysts , 2001 .

[101]  Ayusman Sen,et al.  Novel, Efficient, Palladium-Based System for the Polymerization of Norbornene Derivatives: Scope and Mechanism , 2001 .

[102]  Z. Guan,et al.  Novel Branching Topology in Polyethylenes As Revealed by Light Scattering and 13C NMR , 2000 .

[103]  A. Shafir,et al.  Synthesis, Structure, and Properties of 1,1‘-Diamino- and 1,1‘-Diazidoferrocene , 2000 .

[104]  D. J. Tempel,et al.  Mechanistic Studies of Pd(II)−α-Diimine-Catalyzed Olefin Polymerizations1 , 2000 .

[105]  M. Brookhart,et al.  Late-metal catalysts for ethylene homo- and copolymerization. , 2000, Chemical reviews.

[106]  G. Coates Precise control of polyolefin stereochemistry using single-site metal catalysts. , 2000, Chemical reviews.

[107]  B. Novak,et al.  Copolymerization of polar monomers with olefins using transition-metal complexes. , 2000, Chemical reviews.

[108]  H. Alt,et al.  Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization. , 2000, Chemical reviews.

[109]  E. Oñate,et al.  Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts : influence of temperature, ethylene pressure, and ligand structure on polymer properties , 2000 .

[110]  G. Hlatky Heterogeneous single-site catalysts for olefin polymerization. , 2000, Chemical reviews.

[111]  McLain,et al.  Chain walking: A new strategy to control polymer topology , 1999, Science.

[112]  C. Mirkin,et al.  Ligand Design for Electrochemically Controlling Stoichiometric and Catalytic Reactivity of Transition Metals. , 1998, Angewandte Chemie.

[113]  L. Cavallo,et al.  The Role of Bulky Substituents in Brookhart-Type Ni(II) Diimine Catalyzed Olefin Polymerization: A Combined Density Functional Theory and Molecular Mechanics Study , 1997 .

[114]  D. J. Tempel,et al.  Living Polymerization of α-Olefins Using NiII−α-Diimine Catalysts. Synthesis of New Block Polymers Based on α-Olefins , 1996 .

[115]  S. Mecking,et al.  Cationic Palladium η3-Allyl Complexes with Hemilabile P,O-Ligands: Synthesis and Reactivity. Insertion of Ethylene into the Pd−Allyl Function , 1996 .

[116]  Maurice Brookhart,et al.  New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins , 1995 .

[117]  M. Wrighton,et al.  Use of the Redox-Active Ligand 1,1'-Bis(diphenylphosphino)cobaltocene To Reversibly Alter the Rate of the Rhodium(I)-Catalyzed Reduction and Isomerization of Ketones and Alkenes , 1995 .

[118]  David W. Bacon,et al.  Gas Phase Ethylene Polymerization: Production Processes, Polymer Properties, and Reactor Modeling , 1994 .

[119]  H. R. Sailors,et al.  History of Polyolefins , 1981 .

[120]  W. Kaminsky,et al.  “Living Polymers” on Polymerization with Extremely Productive Ziegler Catalysts , 1980 .