Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping

This work is devoted to the analysis of a fully-implicit numerical scheme for the critical generalized Korteweg–de Vries equation (GKdV with p = 4) in a bounded domain with a localized damping term. The damping is supported in a subset of the domain, so that the solutions of the continuous model issuing from small data are globally defined and exponentially decreasing in the energy space. Based in this asymptotic behavior of the solution, we introduce a finite difference scheme, which despite being one of the first order, has the good property to converge in L4-strong. Combining this strong convergence with discrete multipliers and a contradiction argument, we show that the smallness of the initial condition leads to the uniform (with respect to the mesh size) exponential decay of the energy associated to the scheme. Numerical experiments are provided to illustrate the performance of the method and to confirm the theoretical results.

[1]  G. P. Menzala,et al.  On the uniform decay for the Korteweg–de Vries equation with weak damping , 2007 .

[2]  F. Smith,et al.  Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[3]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[4]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[5]  Louis Roder Tcheugoué Tébou,et al.  Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity , 2003, Numerische Mathematik.

[6]  Arnaud Münch,et al.  UNIFORM STABILIZATION OF A VISCOUS NUMERICAL APPROXIMATION FOR A LOCALLY DAMPED WAVE EQUATION , 2007 .

[7]  M. Nixon The Discretized Generalized Korteweg-de Vries Equation with Fourth Order Nonlinearity , 2003 .

[8]  Mauricio Sepúlveda,et al.  Coupled system of Korteweg-de Vries equations type in domains with moving boundaries , 2008 .

[9]  Lionel Rosier,et al.  Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain , 1997 .

[10]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[11]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[12]  Felipe Linares,et al.  On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping , 2007 .

[13]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[14]  Luc Molinet,et al.  On the Cauchy Problem for the Generalized Korteweg-de Vries Equation , 2003 .

[15]  Masaaki Sugihara,et al.  Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method , 2002 .

[16]  V. A. Dougalis,et al.  Numerical solution of KdV-KdV systems of Boussinesq equations: I. The numerical scheme and generalized solitary waves , 2007, Math. Comput. Simul..

[17]  Enrique Zuazua,et al.  Stabilization of the Korteweg-De Vries equation with localized damping , 2002 .

[18]  Ohannes A. Karakashian,et al.  Convergence of Galerkin Approximations for the Korteweg-de Vries Equation, , 1983 .

[19]  D. Furihata FINITE DIFFERENCE SCHEMES FOR U/T=(/X)ALPHA DELTA G/DELTA U THAT INHERIT ENERGY CONSERVATION U OR DISSIPATION PROPERTY , 1999 .

[20]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[21]  Frank Merle,et al.  Existence of blow-up solutions in the energy space for the critical generalized KdV equation , 2001 .

[22]  Ting-Zhu Huang,et al.  On the inverse of a general pentadiagonal matrix , 2008, Appl. Math. Comput..

[23]  D. Furihata,et al.  Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .

[24]  Thierry Colin,et al.  An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg–de Vries equation , 2001 .

[25]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[26]  Mauricio Sepúlveda,et al.  The Korteweg-de Vries-Kawahara equation in a bounded domain and some numerical results , 2007, Appl. Math. Comput..

[27]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[28]  P. Souganidis,et al.  Stability and instability of solitary waves of Korteweg-de Vries type , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Terence Tao,et al.  Why are solitons stable , 2008, 0802.2408.

[30]  Mauricio Sepúlveda,et al.  A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes , 2005, Math. Comput..

[31]  G. Folland Introduction to Partial Differential Equations , 1976 .

[32]  Ademir F. Pazoto,et al.  Unique continuation and decay for the Korteweg-de Vries equation with localized damping , 2005 .

[33]  J. Petersson,et al.  Best constants for Gagliardo-Nirenberg inequalities on the real line , 2007 .

[34]  Frank Merle,et al.  Instability of solitons for the critical generalized Korteweg—de Vries equation , 2001 .

[35]  Lionel Rosier,et al.  Global Stabilization of the Generalized Korteweg--de Vries Equation Posed on a Finite Domain , 2006, SIAM J. Control. Optim..