Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping
暂无分享,去创建一个
Mauricio Sepúlveda | Octavio Paulo Vera Villagrán | Ademir Fernando Pazoto | M. Sepúlveda | A. Pazoto | O. V. Villagrán
[1] G. P. Menzala,et al. On the uniform decay for the Korteweg–de Vries equation with weak damping , 2007 .
[2] F. Smith,et al. Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[3] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .
[4] R. Rogers,et al. An introduction to partial differential equations , 1993 .
[5] Louis Roder Tcheugoué Tébou,et al. Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity , 2003, Numerische Mathematik.
[6] Arnaud Münch,et al. UNIFORM STABILIZATION OF A VISCOUS NUMERICAL APPROXIMATION FOR A LOCALLY DAMPED WAVE EQUATION , 2007 .
[7] M. Nixon. The Discretized Generalized Korteweg-de Vries Equation with Fourth Order Nonlinearity , 2003 .
[8] Mauricio Sepúlveda,et al. Coupled system of Korteweg-de Vries equations type in domains with moving boundaries , 2008 .
[9] Lionel Rosier,et al. Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain , 1997 .
[10] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[11] J. Butcher. Implicit Runge-Kutta processes , 1964 .
[12] Felipe Linares,et al. On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping , 2007 .
[13] C. Kenig,et al. Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .
[14] Luc Molinet,et al. On the Cauchy Problem for the Generalized Korteweg-de Vries Equation , 2003 .
[15] Masaaki Sugihara,et al. Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method , 2002 .
[16] V. A. Dougalis,et al. Numerical solution of KdV-KdV systems of Boussinesq equations: I. The numerical scheme and generalized solitary waves , 2007, Math. Comput. Simul..
[17] Enrique Zuazua,et al. Stabilization of the Korteweg-De Vries equation with localized damping , 2002 .
[18] Ohannes A. Karakashian,et al. Convergence of Galerkin Approximations for the Korteweg-de Vries Equation, , 1983 .
[19] D. Furihata. FINITE DIFFERENCE SCHEMES FOR U/T=(/X)ALPHA DELTA G/DELTA U THAT INHERIT ENERGY CONSERVATION U OR DISSIPATION PROPERTY , 1999 .
[20] L. Nirenberg,et al. On elliptic partial differential equations , 1959 .
[21] Frank Merle,et al. Existence of blow-up solutions in the energy space for the critical generalized KdV equation , 2001 .
[22] Ting-Zhu Huang,et al. On the inverse of a general pentadiagonal matrix , 2008, Appl. Math. Comput..
[23] D. Furihata,et al. Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .
[24] Thierry Colin,et al. An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg–de Vries equation , 2001 .
[25] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[26] Mauricio Sepúlveda,et al. The Korteweg-de Vries-Kawahara equation in a bounded domain and some numerical results , 2007, Appl. Math. Comput..
[27] U. Ascher,et al. Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .
[28] P. Souganidis,et al. Stability and instability of solitary waves of Korteweg-de Vries type , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[29] Terence Tao,et al. Why are solitons stable , 2008, 0802.2408.
[30] Mauricio Sepúlveda,et al. A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes , 2005, Math. Comput..
[31] G. Folland. Introduction to Partial Differential Equations , 1976 .
[32] Ademir F. Pazoto,et al. Unique continuation and decay for the Korteweg-de Vries equation with localized damping , 2005 .
[33] J. Petersson,et al. Best constants for Gagliardo-Nirenberg inequalities on the real line , 2007 .
[34] Frank Merle,et al. Instability of solitons for the critical generalized Korteweg—de Vries equation , 2001 .
[35] Lionel Rosier,et al. Global Stabilization of the Generalized Korteweg--de Vries Equation Posed on a Finite Domain , 2006, SIAM J. Control. Optim..