Existence and global stability of equilibrium point for delayed competitive neural networks with discontinuous activation functions
暂无分享,去创建一个
Jinde Cao | Xiaobing Nie | Jinde Cao | X. Nie
[1] Tianping Chen,et al. Dynamical behaviors of Cohen-Grossberg neural networks with discontinuous activation functions , 2005, Neural Networks.
[2] Anke Meyer-Bäse,et al. Robust stability analysis of competitive neural networks with different time-scales under perturbations , 2007, Neurocomputing.
[3] Anke Meyer-Bäse,et al. Global exponential stability of competitive neural networks with different time scales , 2003, IEEE Trans. Neural Networks.
[4] Zidong Wang,et al. A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances , 2008 .
[5] Anke Meyer-Bäse,et al. Stability Analysis of an Unsupervised Competitive Neural Network , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.
[6] R. Westervelt,et al. Stability of analog neural networks with delay. , 1989, Physical review. A, General physics.
[7] Mauro Forti. M-matrices and global convergence of discontinuous neural networks , 2007, Int. J. Circuit Theory Appl..
[8] Yurong Liu,et al. State estimation for jumping recurrent neural networks with discrete and distributed delays , 2009, Neural Networks.
[9] Huaiqin Wu,et al. Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses , 2009 .
[10] Hongtao Lu,et al. Global Exponential Stability of Multitime Scale Competitive Neural Networks With Nonsmooth Functions , 2006, IEEE Transactions on Neural Networks.
[11] Xiangnan Zhou,et al. Existence and global asymptotic stability of periodic solutions for Hopfield neural networks with discontinuous activations , 2009 .
[12] Duccio Papini,et al. Global exponential stability of the periodic solution of a delayed neural network with discontinuous activations , 2005 .
[13] Jinde Cao,et al. On periodic solutions of neural networks via differential inclusions , 2009, Neural Networks.
[14] Duccio Papini,et al. Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain , 2005, IEEE Transactions on Neural Networks.
[15] Zhenyuan Guo,et al. Dynamical behavior of delayed Hopfield neural networks with discontinuous activations , 2009 .
[16] J. Cortés. Discontinuous dynamical systems , 2008, IEEE Control Systems.
[17] Yingwei Li,et al. Existence and stability of periodic solution for BAM neural networks with discontinuous neuron activations , 2008, Comput. Math. Appl..
[18] Anke Meyer-Bäse,et al. Singular Perturbation Analysis of Competitive Neural Networks with Different Time Scales , 1996, Neural Computation.
[19] J. Cao,et al. Exponential stability of competitive neural networks with time-varying and distributed delays , 2008 .
[20] Zidong Wang,et al. State Estimation for Coupled Uncertain Stochastic Networks With Missing Measurements and Time-Varying Delays: The Discrete-Time Case , 2009, IEEE Transactions on Neural Networks.
[21] Tianping Chen,et al. Dynamical Behaviors of Delayed Neural Network Systems with Discontinuous Activation Functions , 2006, Neural Computation.
[22] Jinde Cao,et al. Multistability of competitive neural networks with time-varying and distributed delays , 2009 .
[23] Zidong Wang,et al. Global synchronization for delayed complex networks with randomly occurring nonlinearities and multiple stochastic disturbances , 2009 .
[24] Tianping Chen,et al. Almost Periodic Dynamics of a Class of Delayed Neural Networks with Discontinuous Activations , 2008, Neural Computation.
[25] Lihong Huang,et al. Global asymptotic stability of neural networks with discontinuous activations , 2009, Neural Networks.
[26] Amir F. Atiya,et al. How delays affect neural dynamics and learning , 1994, IEEE Trans. Neural Networks.
[27] Paulo Martins Engel,et al. A new proposal for implementation of competitive neural networks in analog hardware , 1998, Proceedings 5th Brazilian Symposium on Neural Networks (Cat. No.98EX209).
[28] J J Hopfield,et al. Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.
[29] M. Forti,et al. Global convergence of neural networks with discontinuous neuron activations , 2003 .
[30] M. Kisielewicz. Differential Inclusions and Optimal Control , 1991 .
[31] Sergey M. Sergeev,et al. Tetrahedron equations, boundary states and the hidden structure of , 2009 .
[32] Huaiqin Wu,et al. Stability analysis for periodic solution of neural networks with discontinuous neuron activations , 2009 .
[33] Shengyuan Xu,et al. A new approach to exponential stability analysis of neural networks with time-varying delays , 2006, Neural Networks.
[34] Aleksej F. Filippov,et al. Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.
[35] K. Deimling. Fixed Point Theory , 2008 .
[36] Hongtao Lu,et al. Global exponential stability of delayed competitive neural networks with different time scales , 2005, Neural Networks.
[37] Jinde Cao,et al. Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects , 2010 .
[38] Zidong Wang,et al. Global Synchronization for Discrete-Time Stochastic Complex Networks With Randomly Occurred Nonlinearities and Mixed Time Delays , 2010, IEEE Transactions on Neural Networks.
[39] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[40] Z. Guan,et al. An LMI Approach to Exponential Stability Analysis of Neural Networks with Time-Varying Delay , 2005, TENCON 2005 - 2005 IEEE Region 10 Conference.
[41] M. Forti,et al. Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations , 2006 .