Local control strategies for groups of mobile autonomous agents

The problem of achieving a specified formation among a group of mobile autonomous agents by distributed control is studied. If convergence to a point is feasible, then more general formations are achievable too, so the focus is on convergence to a point (the agreement problem). Three formation strategies are studied and convergence is proved under certain conditions. Also, motivated by the question of whether collisions occur, formation evolution is studied.

[1]  Tom J. Richardson,et al.  Stable polygons of cyclic pursuit , 2001, Annals of Mathematics and Artificial Intelligence.

[2]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[3]  Alfred M. Bruckstein,et al.  Ants, Crickets and Frogs in Cyclic Pursuit , 1991 .

[4]  Kalyanmoy Deb,et al.  On self-adaptive features in real-parameter evolutionary algorithms , 2001, IEEE Trans. Evol. Comput..

[5]  David A. Schoenwald,et al.  Decentralized control of cooperative robotic vehicles: theory and application , 2002, IEEE Trans. Robotics Autom..

[6]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[7]  Hans-Georg Beyer,et al.  Performance analysis of evolution strategies with multi-recombination in high-dimensional RN-search spaces disturbed by noise , 2002, Theor. Comput. Sci..

[8]  Bruce A. Francis,et al.  A pursuit strategy for wheeled-vehicle formations , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[9]  W ReynoldsCraig Flocks, herds and schools: A distributed behavioral model , 1987 .

[10]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[11]  B. Achiriloaie,et al.  VI REFERENCES , 1961 .

[12]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[13]  Richard M. Murray,et al.  DISTRIBUTED COOPERATIVE CONTROL OF MULTIPLE VEHICLE FORMATIONS USING STRUCTURAL POTENTIAL FUNCTIONS , 2002 .

[14]  Marios M. Polycarpou,et al.  Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[15]  Mireille E. Broucke,et al.  Local control strategies for groups of mobile autonomous agents , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[17]  Hans-Georg Beyer,et al.  Qualms Regarding the Optimality of Cumulative Path Length Control in CSA/CMA-Evolution Strategies , 2003, Evolutionary Computation.

[18]  Masafumi Yamashita,et al.  A robust distributed convergence algorithm for autonomous mobile robots , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[19]  Ryan J. Leduc,et al.  Hierarchical Interface-based Supervisory Control , 2003 .

[20]  C. T. Kelley,et al.  An Implicit Filtering Algorithm for Optimization of Functions with Many Local Minima , 1995, SIAM J. Optim..

[21]  Nidhal Rezg,et al.  Feedback control logic for forbidden-state problems of marked graphs: application to a real manufacturing system , 2003, IEEE Trans. Autom. Control..

[22]  W. M. Wonham,et al.  STCT: An Efficient Algorithm for Supervisory Control Design , 2002 .

[23]  Paul Keng-Chieh Wang Navigation strategies for multiple autonomous mobile robots moving in formation , 1991, J. Field Robotics.

[24]  V. Torczon,et al.  From Evolutionary Operation to Parallel Direct Search : Pattern Search Algorithms for Numerical Optimization , 1998 .

[25]  J. Wolfowitz Products of indecomposable, aperiodic, stochastic matrices , 1963 .

[26]  B. A. Brandin,et al.  The supervisory control of the automated manufacturing system of the AIP , 1994, Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation Technology.

[27]  Masafumi Yamashita,et al.  Formation and agreement problems for synchronous mobile robots with limited visibility , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[28]  Masafumi Yamashita,et al.  Distributed memoryless point convergence algorithm for mobile robots with limited visibility , 1999, IEEE Trans. Robotics Autom..

[29]  J. Spall Adaptive stochastic approximation by the simultaneous perturbation method , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[30]  Hans-Georg Beyer,et al.  A Comparison of Evolution Strategies with Other Direct Search Methods in the Presence of Noise , 2003, Comput. Optim. Appl..

[31]  Masafumi Yamashita,et al.  Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 1999, SIAM J. Comput..

[32]  Ichiro Suzuki,et al.  Distributed motion coordination of multiple mobile robots , 1990, Proceedings. 5th IEEE International Symposium on Intelligent Control 1990.

[33]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[34]  J. Y. S. Luh,et al.  Coordination and control of a group of small mobile robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.