High-order Adaptive Time Stepping for Vesicle Suspensions with Viscosity Contrast☆

Abstract We construct a high-order adaptive time stepping scheme for vesicle suspensions with viscosity contrast. The high-order accuracy is achieved using a spectral deferred correction (SDC) method, and adaptivity is achieved by estimating the local truncation error with the numerical error of physically constant values. Numerical examples demonstrate that our method can handle suspensions with vesicles that are tumbling, tank-treading, or both. Moreover, we demonstrate that a user-prescribed tolerance can be automatically achieved for simulations with long time horizons.

[1]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[2]  Yang Xiang,et al.  An integral equation method for epitaxial step-flow growth simulations , 2006, J. Comput. Phys..

[3]  George Biros,et al.  High-volume fraction simulations of two-dimensional vesicle suspensions , 2013, J. Comput. Phys..

[4]  E. Sackmann,et al.  Supported Membranes: Scientific and Practical Applications , 1996, Science.

[5]  C. Pozrikidis,et al.  The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow , 1990, Journal of Fluid Mechanics.

[6]  George Biros,et al.  Vesicle migration and spatial organization driven by flow line curvature. , 2011, Physical review letters.

[7]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[8]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[9]  Chaouqi Misbah,et al.  Vacillating breathing and tumbling of vesicles under shear flow. , 2006, Physical review letters.

[10]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: Index , 1992 .

[11]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[12]  Seifert,et al.  Fluid Vesicles in Shear Flow. , 1996, Physical review letters.

[13]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[14]  H. Noguchi,et al.  Shape transitions of fluid vesicles and red blood cells in capillary flows. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  George Biros,et al.  Adaptive time stepping for vesicle suspensions , 2014, J. Comput. Phys..

[16]  Colin B. Macdonald,et al.  Revisionist integral deferred correction with adaptive step-size control , 2013, 1310.6331.

[17]  George Biros,et al.  A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D , 2009, J. Comput. Phys..

[18]  George Biros,et al.  Author ' s personal copy Dynamic simulation of locally inextensible vesicles suspended in an arbitrary two-dimensional domain , a boundary integral method , 2010 .