Representation of land-surface processes in aeolian transport models

Abstract Mathematical modelling provides an essential tool for understanding aeolian transport of dust and sand, its spatial and temporal dynamics, and its role in the earth system. As much of the crucial action takes place at or just above land surfaces, adequate representation of land-surface processes is essential. In this paper, we review progress in aeolian transport modelling during last two decades, with emphasis on the representation of several key land-surface processes: (1) saltation; (2) dust uplift; (3) the threshold for particle motion, including the effects of surface sheltering and cohesion; (4) turbulent diffusion near the ground; and (5) deposition of particles to the surface. These process models are then placed in the context of integrated models of aeolian transport, in which the conservation equation for atmospheric dust is solved over a large region or the globe. We identify and assess four challenges in large-scale aeolian transport modelling: (1) the fidelity of process representations, (2) upscaling point-scale process models in the presence of unresolved heterogeneity in space and time (where a new approach is suggested), (3) availability of spatial data on model inputs and boundary conditions, and (4) large-scale parameter estimation.

[1]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[2]  I. R. Cowan,et al.  Transfer processes in plant canopies in relation to stomatal characteristics. , 1987 .

[3]  M. Raupach Drag and drag partition on rough surfaces , 1992 .

[4]  Zifa Wang,et al.  A deflation module for use in modeling long‐range transport of yellow sand over East Asia , 2000 .

[5]  John L. Monteith,et al.  Vegetation and the atmosphere , 1975 .

[6]  G. Csanady Turbulent Diffusion of Heavy Particles in the Atmosphere , 1963 .

[7]  Ian G. Enting,et al.  Inverse problems in atmospheric constituent transport , 2002 .

[8]  Ranjit M. Passi,et al.  Modeling dust emission caused by wind erosion , 1988 .

[9]  Inez Y. Fung,et al.  Contribution to the atmospheric mineral aerosol load from land surface modification , 1995 .

[10]  D. Crawley,et al.  Drag Partition for Regularly-Arrayed Rough Surfaces , 2003 .

[11]  B. Maher,et al.  Evidence against dust-mediated control of glacial–interglacial changes in atmospheric CO2 , 2001, Nature.

[12]  Y. Shao Physics and Modelling of Wind Erosion , 2001 .

[13]  Cliff I. Davidson,et al.  Dry Deposition of Particles and Vapors , 1990 .

[14]  M. Schulz,et al.  Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness , 1998 .

[15]  D. Bache Analysing particulate deposition to plant canopies , 1981 .

[16]  A. Watson,et al.  Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 , 2000, Nature.

[17]  Slobodan Nickovic,et al.  A Model for Long-Range Transport of Desert Dust , 1996 .

[18]  William H. Press,et al.  Numerical Recipes in Fortran 77: The Art of Scientific Computing 2nd Editionn - Volume 1 of Fortran Numerical Recipes , 1992 .

[19]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[20]  Lance M. Leslie,et al.  Wind erosion prediction over the Australian continent , 1997 .

[21]  Jie Xuan,et al.  Characterization of sources and emission rates of mineral dust in Northern China , 2002 .

[22]  Leon Lyles,et al.  Equivalent Wind-Erosion Protection from Selected Crop Residues , 1980 .

[23]  P. R. Owen,et al.  Saltation of uniform grains in air , 1964, Journal of Fluid Mechanics.

[24]  Arthur W. Warrick,et al.  Environmental mechanics: water, mass and energy transfer in the biosphere. , 2002 .

[25]  B. Fletcher The erosion of dust by an airflow , 1976 .

[26]  H. Charnock Wind stress on a water surface , 1955 .

[27]  Paul Ginoux,et al.  Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the NIMBUS-7 TOMS Absorbing Aerosol Product , 2001 .

[28]  D. Gillette,et al.  The effect of nonerodible particles on wind erosion of erodible surfaces , 1989 .

[29]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[30]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[31]  Y. Shao,et al.  A simple expression for wind erosion threshold friction velocity , 2000 .

[32]  C. Genthon,et al.  Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere , 1992 .

[33]  W. Nickling,et al.  The effects of soluble salts on the threshold shear velocity of fine sand , 1981 .

[34]  W. Nickling The stabilizing role of bonding agents on the entrainment of sediment by wind , 1984 .

[35]  W. Slinn,et al.  Predictions for particle deposition to vegetative canopies , 1982 .

[36]  B. Marticorena,et al.  Change in the aerodynamic roughness height by saltating grains: Experimental assessment, test of theory, and operational parameterization , 1998 .

[37]  H. Musick,et al.  Wind-tunnel modelling of the influence of vegetation structure on saltation threshold , 1996 .

[38]  Damian Barrett,et al.  Terrestrial biosphere models and forest-atmosphere interactions , 2005 .

[39]  M. Raupach Near-field dispersion from instantaneous sources in the surface layer , 1983 .

[40]  M. Selim Yalin,et al.  Mechanics of sediment transport , 1972 .

[41]  Toby N. Carlson,et al.  A case study of mobilization and transport of Saharan dust , 1988 .

[42]  Dale A. Gillette,et al.  Fine Particulate Emissions Due to Wind Erosion , 1977 .

[43]  Raupach,et al.  Soil flux measurements using a portable wind erosion tunnel , 1991 .

[44]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[45]  William G. Nickling,et al.  A THEORETICAL AND WIND TUNNEL INVESTIGATION OF THE EFFECT OF CAPILLARY WATER ON THE ENTRAINMENT OF SEDIMENT BY WIND , 1989 .

[46]  V. Wyatt,et al.  Drag and shear stress partitioning in sparse desert creosote communities , 1997 .

[47]  I. McEwan,et al.  An experimental study of multiple grain‐size ejecta produced by collisions of saltating grains with a flat bed , 1995 .

[48]  W. Graf Hydraulics of Sediment Transport , 1984 .

[49]  Bernard Aumont,et al.  Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources , 1997 .

[50]  N. Mahowald,et al.  Inverse methods in global biogeochemical cycles , 2000 .

[51]  An explicit equation for deposition velocity , 1985 .

[52]  Toby N. Carlson,et al.  A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms , 1987 .

[53]  Yaping Shao,et al.  Toward quantitative prediction of dust storms: an integrated wind erosion modelling system and its applications , 2001, Environ. Model. Softw..

[54]  H. Musick,et al.  Field evaluation of relationships between a vegetation structural parameter and sheltering against wind erosion , 1990 .

[55]  D. Thomas,et al.  Wind as a Geological Process on Earth, Mars, Venus and Titan , 1988 .

[56]  Michael R. Raupach,et al.  Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index , 1994 .

[57]  B. Yates,et al.  Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow , 1973 .

[58]  M. R. Raupach Vegetation-atmosphere interaction in homogeneous and heterogeneous terrain: some implications of mixed-layer dynamics , 1991 .

[59]  Simulation of long-range transport of acidic pollutants in East Asia during the Yellow Sand event , 2002 .

[60]  Soon-Ung Park,et al.  A simulation of long-range transport of Yellow Sand observed in April 1998 in Korea , 2002 .

[61]  W. H. Walton The Mechanics of Aerosols , 1966 .

[62]  Raupach,et al.  A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region , 1996 .

[63]  William G. Nickling,et al.  SHEAR STRESS PARTITIONING IN SPARSELY VEGETATED DESERT CANOPIES , 1996 .

[64]  L. Leslie,et al.  Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system , 2002 .

[65]  J. Seinfeld,et al.  Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols , 1987 .

[66]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[67]  H. Tsoar,et al.  Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen , 1994 .

[68]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[69]  J. Evans,et al.  An Inventory of Particulate Emissions from Open Sources , 1980 .

[70]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[71]  N. Woods,et al.  The entrapment of particles by windbreaks , 2001 .

[72]  Yaping Shao,et al.  A new model for dust emission by saltation bombardment , 1999 .

[73]  M. Raupach,et al.  Endosulfan transport: II. Modeling airborne dispersal and deposition by spray and vapor. , 2001, Journal of environmental quality.

[74]  Sue Chen,et al.  Terrain and land use for the fifth-generation Penn State/NCAR Mesoscale Modeling System (MM5): Program TERRAIN , 1994 .

[75]  T. R. Walker,et al.  CHARACTERISTICS OF AIRBORNE PARTICLES PRODUCED BY WIND EROSION OF SANDY SOIL, HIGH PLAINS OF WEST TEXAS , 1977 .

[76]  I. Lee Simulation of transport and removal processes of the Saharan dust , 1983 .

[77]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[78]  Sylvie Joussaume,et al.  Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model , 1990 .

[79]  P. Chatwin The dispersion of a puff of passive contaminant in the constant stress region , 1968 .

[80]  G. d’Almeida,et al.  A model for Saharan dust transport , 1986 .

[81]  Y. Balkanski,et al.  Modeling the atmospheric distribution of mineral aerosol : Comparison with ground measurements and satellite observations for yearly and synoptic timescales over the North Atlantic , 2000 .

[82]  V. Stolbovoi FAO Land and Water Digital Media Series No. 7. Soil and Physiographic Database for North and Central EURASIA at 1:5 Million Scale , 1998 .

[83]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[84]  A. Thom Momentum absorption by vegetation , 1971 .

[85]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[86]  S. J. WHITE,et al.  Plane Bed Thresholds of Fine Grained Sediments , 1970, Nature.

[87]  B. Fletcher The incipient motion of granular materials , 1976 .

[88]  M. Raupach,et al.  The effect of roughness elements on wind erosion threshold , 1993 .

[89]  John A. Gillies,et al.  Drag coefficient and plant form response to wind speed in three plant species: Burning Bush (Euonymus alatus), Colorado Blue Spruce (Picea pungens glauca.), and Fountain Grass (Pennisetum setaceum) , 2002 .

[90]  Cheryl Mckenna Neuman Effects of Temperature and Humidity upon the Entrainment of Sedimentary Particles by Wind , 2003 .

[91]  K. Peters,et al.  Modelling the dry deposition velocity of aerosol particles to a spruce forest , 1992 .

[92]  Ian McEwan,et al.  Wind Erosion of Crusted Soil Sediments , 1996 .

[93]  G. Bergametti,et al.  Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas , 1999 .

[94]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[95]  L. Gomes,et al.  Modeling the size distribution of a soil aerosol produced by sandblasting , 1997 .