Homogeneous weights and exponential sums
暂无分享,去创建一个
[1] T. Honold,et al. Weighted modules and representations of codes , 1998 .
[2] Claude Carlet. Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.
[3] CarletC.. Z2k-linear codes , 1998 .
[4] Marcus Greferath,et al. Gray isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code , 1999, IEEE Trans. Inf. Theory.
[5] Judy L. Walker,et al. Codes over rings from curves of higher genus , 1999, IEEE Trans. Inf. Theory.
[6] A. Robert Calderbank,et al. Construction of a (64, 2 37, 12) Code via Galois Rings , 1997, Des. Codes Cryptogr..
[7] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[8] Judy L. Walker,et al. The Nordstrom-Robinson code is algebraic-geometric , 1997, IEEE Trans. Inf. Theory.
[9] Judy L. Walker. Algebraic Geometric Codes over Rings , 1999 .
[10] T. Honold,et al. Characterization of finite Frobenius rings , 2001 .
[11] José Felipe Voloch,et al. Euclidean weights of codes from elliptic curves over rings , 2000 .
[12] C. Carlet. Z/sub 2/k-linear codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[13] Jay A. Wood. Duality for modules over finite rings and applications to coding theory , 1999 .
[14] Luís R. A. Finotti. Degrees of the Elliptic Teichmüller Lift , 2002 .